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Abstract

This paper contains a concise comparison of a number of nonlinear attitude filtering methods that

have attracted attention in the robotics and aviation literature. With the help of previously published

surveys and comparison studies, the vast literature on the subject is narrowed down to a small pool

of competitive attitude filters. Amongst these filters is a second-order optimal minimum-energy filter

recently proposed by the authors. Easily comparable discretized unit quaternion implementations of the

selected filters are provided. We conduct a simulation study and compare the transient behaviour and

asymptotic convergence of these filters in two scenarios with different initialization and measurement

errors inspired by applications in unmanned aerial robotics and space flight. The second-order optimal

minimum-energy filter is shown to have the best performance of all filters, including the industry standard

multiplicative extended Kalman filter (MEKF).

1 INTRODUCTION

There are many highly-regarded attitude estimation methods that have been proposed in the literature [1,

2]. In this paper we will focus on recursive, continuous-time filters and exclude non-recursive attitude
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determination algorithms (e.g. [3–8]) , H∞ filters (e.g. [8–10]), discrete-update filters (e.g. [11]), and attitude

filters that are based on dynamics or second-order kinematics (e.g. [7,8,12]). Within the class of algorithms

that we do consider is the industry standard Multiplicative Extended Kalman Filter (MEKF [13]). Recent

competitors to the MEKF are the Right-Invariant Extended Kalman Filter (RIEKF) that is also known as

the Generalized Multiplicative Extended Kalman Filter GMEKF [14], the UnScented QUaternion Estimator

(USQUE [15]) as well as the Geometric Approximate Minimum-Energy (GAME) [16] filter that is a second-

order optimal minimum-energy attitude filter recently published by the authors. In addition, to these

variable-gain filters we include the nonlinear complementary attitude observer [17], that we refer to as

the Constant Gain Observer (CGO). Due to the natural academic process of incremental development of

algorithms, it can be difficult to determine what is the state-of-the-art version of any given algorithm.

Moreover, different algorithms use different notation, and even different attitude representations, making

cross comparison of competing algorithms difficult. As a result there is a lack of comparative studies in the

literature that provide relative advantages and disadvantages of these methods compared against each other.

Many of the advanced attitude filtering methods are still being advertised by demonstrating performance

gain versus a naive implementation of the extended Kalman filter (EKF [18,19]), an outdated attitude filter

with well known convergence issues (cf. [20]).

In this paper we document a comprehensive simulation study that sets out to compare the performance

of state-of-the-art recursive attitude filters based on the continuous-time attitude kinematics model. The

continuous-time selection criterion enables us to capture a larger pool of attitude filters for comparison study

as opposed to discrete-time or continuous-discrete-time (discrete-update) attitude filtering that is employed

in only a few filters, eg. [11, 13]. We are motivated by the goal of demonstrating the relative performance

of the second-order optimal minimum-energy attitude filter recently published by the authors [16], however,

we have taken this opportunity to provide a consistent exposition of the structure, merits and performance

of the different filters common in the literature. In particular, the paper presents

• A literature survey that highlights the state-of-the-art recursive, continuous-time attitude filtering

methods that are used in robotics applications.

• Simple discretized unit quaternion implementations of the state-of-the-art attitude filters in consis-
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tent language. MATLAB code for the simulation study is available from the fist author’s web page:

https://sites.google.com/site/mohammadzamanishomepage.

• A comprehensive Monte-Carlo simulation study comparing the state-of-the-art filters. Two scenarios

are considered; the first derived from typical parameters associated with attitude estimation for appli-

cations in unmanned aerial vehicles (UAVs), and the second from applications in the satellite attitude

estimation problem.

We also provide a discussion of how the different algorithms are tuned to obtain best performance. A key

aspect of the simulation studies is the inclusion of gyroscope bias estimation in the estimator algorithms.

In practice, high performance attitude estimation requires on-line bias estimation of the gyroscope, and we

have also found that it is a critical factor when comparing relative performance of attitude filters. In fact, in

the absence of the bias estimator most of the state-of-the-art algorithms have comparable performance. We

will demonstrate this point using a simulation instance where no bias estimator is present in the competing

filters.

The remainder of the paper is organised as follows. Section 3 briefly explains attitude filtering and

recapitulates the authors’ recent GAME filter, a second-order optimal minimum-energy attitude filter. In

Section 2 a summary of some of the important attitude filtering methods is provided that also explains the

choice of methods that are included in the simulation study. Section 4 describes the numerical implementation

of filters considered in the simulation study. In particular, the discretization details of each method are

provided separately. In Section 5 two comparison studies are considered, a UAV simulation setup and a

spacecraft simulation setup for which the performance of the GAME filter is compared against the other

attitude filters. Section 6 provides the conclusions of the paper.

2 Attitude Filtering Methods

This section includes a brief review of some the most important attitude filtering methods that are employed

in aerial robotics. In particular, the main ideas behind some attitude filters are explained and a number of

these methods are selected, against which the performance of the GAME filter is studied in simulations.
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Attitude

Filters
state Ref. Compared Against Comments

GAME

SO(3) (Unit

Quaternions in

Simulations)

Table

3

MEKF, USQUE, Con-

stant Gain Observer

The GAME filter is a 2nd-order approximation to a minimum-

energy filter derived directly on SO(3) that estimates the gyro bias

quickly and is more robust to different noise levels with minimal

tuning.

MEKF
Unit

Quaternions
[13]

USQUE, SR-QCKF

[21]

The MEKF estimates a unit quaternion by implicitly running an

EKF in the vector space of its angular velocity input.

RIEKF

GMEKF

Unit

Quaternions
[14] MEKF

RIEKF is a right-invariant construction of the EKF, by consider-

ing measurement noise modeled in the inertial frame. The RIEKF

has better convergence properties than the MEKF.

USQUE
Unit

Quaternions
[15]

MEKF, SR-QCKF [21],

EKF [15], BAF [22]

A three-component attitude error is used to derive an unscented

filter and the resulting estimated error is converted back to unit

quaternions and multiplied with the previously estimated quater-

nion to produce the filter’s estimate.

BAF
Unit

Quaternions
[22] USQUE [22]

The BAF achieves comparable performance to the USQUE, with

the computational costs of particle filtering

SR-

QCKF

Normalized

Quaternions
[21] USQUE, MEKF [21]

The USQUE requires more computation than the SR-QCKF but

outperforms it in mean square error.

AEKF
Normalized

Quaternions
[23] MEKF

AEKF is conceptually simpler than the MEKF, but with higher

computational cost. The MEKF is also preferred as it avoids the

embedding errors.

CGO
Unit

Quaternions
[17]

A carefully tuned constant gain is used with the same observer

equations as in the MEKF or the GAME filter. It is very robust

and asymptotically convergent with minimal computational load

but requires exact tuning.

EKF
Normalized

Quaternions
[19] USQUE [15]

The EKF in its standard form is outperformed by the USQUE.

The AEKF and the MEKF build up on the EKF to improve the

performance.

Table 1: GAME filter: Geometric Approximate Minimum Energy filter, a second-order optimal minimum-energy filter, MEKF:

Multiplicative Extended Kalman Filter, RIEKF: Right-Invariant Extended Kalman Filter, GMEKF: Generalized Multiplicative

Extended Kalman Filter, SR-QCKF: Square-Root Quaternion Kalman Filter, USQUE: Unscented Quaternion Kalman Filter,

BAF: Bootstrap Attitude Filter, AEKF: Additive Extended Kalman Filter, CGO: Constant Gain Observer, EKF:Extended

Kalman Filter.
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There are too many attitude filtering methods documented in the literature that we could hope to provide

a detailed survey of all such methods in this paper. A good survey of early attitude filters is given in [24]

while more recent material is provided in [1]. The recent book [2] adds more current methods and detailed

explanations, and we will try to cover more recent work on continuous-time recursive algorithms in the

present paper. However, particular applications may require specific modifications or variations of filtering

algorithms that, although important for that specific situation, are not interesting in the context of making

a more general comparison. In this paper we will concentrate on our best understanding of what is the most

generic algorithm for each filter architecture.

Crassidis et. al [1] concluded that “Many nonlinear filtering methods have been applied to the problem

of spacecraft attitude determination in the past three decades. This paper has provided a survey of the

methods that its authors consider to be most promising. It remains the case, however, that the extended

Kalman filter, especially in the form known as the multiplicative extended Kalman filter, remains the method

of choice for the great majority of applications.”. It remains the case that the MEKF [13] is an industry

standard in recursive attitude filtering and it is an obvious benchmark for the comparisons undertaken in the

present paper. The idea behind the MEKF is to consider the true attitude state as the product of a reference

quaternion and an error quaternion that represents the difference between the reference attitude and the

true attitude. The error quaternion is parameterized by a three dimensional representation of attitude and

is estimated using an EKF. The MEKF estimates the true attitude by multiplying the estimated error

quaternion (converted back to a unit quaternion) and the reference quaternion [1]. In order to avoid the

redundancy of having to estimate both the reference quaternion and the error quaternion, the reference

quaternion is chosen in a way that the error quaternion is the identity quaternion. Therefore, the MEKF

directly calculates the reference quaternion as a unit quaternion estimate of the true attitude by implicitly

running an EKF in the vector space of its angular velocity input.

The standard EKF, derived in Euler angle local coordinates [19], is known to have poor performance

and stability issues [20] and is outperformed by the MEKF [13]. The Additive Extended Kalman Filter

(AEKF) [23] considers the unit quaternion representation of attitude, but initially ignores the unit norm

constraint and has been shown to have no better performance than the MEKF [23]. There are many
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other clever implementations of the the EKF addressing the attitude filtering problem. However, in our

simulation study we only intend to consider straightforward implementations of the selected mainstream

methodologies. A noteworthy family of attitude filters use a third-degree spherical-radial cubature integration

rule to improve the numerical computation of Gaussian weighted integrals. A recent variant, the Square-Root

Quaternion Cubature Kalman Filter (SR-QCKF) [21], offers improved numerical stability by guaranteeing

the positiveness of the covariance matrix.

The MEKF is in fact a special case of a more general filter design paradigm termed the left invariant

extended Kalman filter IEKF [25,26]. The invariant extended Kalman filter modifies the EKF equations by

using an invariant output error rather than a linear error and also by updating the gain using an invariant

state error instead of a linear state error. The right invariant EKF (RIEKF) or generalized MEKF (GMEKF)

[14] is a closely related observer that uses the other-handed invariance for the filter derivation. The RIEKF

is based on the assumption that the state and the output errors are configured in the inertial frame rather

than the body-fixed frame, and although this assumption may in itself be questionable, it leads to better

stability and conditioning of the associated Riccati equation. We include the GMEKF in the simulation

study to verify its performance improvement over the equivalent IEKF and MEKF algorithms.

The unscented quaternion estimator (USQUE [15]) is an attitude filter based on the unscented filter

(UF [27]) that has considerable support in the literature and has been proven to work well in many appli-

cations. The UF uses a carefully chosen set of sigma points to approximate the probability distribution as

opposed to the EKF that uses local Gaussian noise distributions. For a naive implementation of the UF, the

updated quaternion mean would be obtained by an averaging process that would not in general maintain the

unit norm condition of the unit quaternion representing the attitude. This is overcome in the USQUE [15]

where a three-component attitude error is used to derive an unscented filter and the resulting estimated error

is converted back to unit quaternions and multiplied with the previously estimated quaternion to produce

the attitude estimate. The hope is that the singularities in the error representation will never occur since

the quaternion error is small. In a recent paper [21], it was shown that the USQUE had a similar estimation

error compared to the MEKF although with a faster convergence rate. Due to its relatively strong following

in the literature and the results in the recent paper [21], the USQUE has been included in the simulation
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study. Closely related to the USQUE filter is the Bootstrap Attitude Filter (BAF). This method is based

on particle filtering where different to unscented filtering the samples or particles are drawn randomly to

approximate the entire underlying distribution and not just the first two moments. The BAF has been

shown [22] to achieve comparable results to the USQUE , albeit with the high computational load of particle

filtering and hence is not selected for our simulation study.

The second-order optimal minimum-energy (GAME) filter comprises the same observer equations as the

continuous-time MEKF [13], and the other invariant observers [25, 26]. However, the Riccati equation of

the GAME filter includes curvature correction terms and a geometric second order derivative of the output

function that are not present in the algorithms based on stochastic principles. These terms come from

computing the full second-order information in the propagation equation for the taylor’s expansion of the

value-function associated with a deterministic optimal filtering problem, rather than relying on the invariance

to propagate local covariance estimates.

There is a large class of constant-gain nonlinear observers designed for attitude estimation (cf. [17,28–34])

that are also attractive methods to consider, as they are proven to produce asymptotically convergent

estimates. A simple modification of the observer proposed in [17] allows the inclusion of a (constant) matrix

gain rather than the scalar gains in the earlier papers. For applications where robustness and simplicity of

an algorithm is critical, constant gain observers are of significant interest and it is natural to include the

constant gain observer in the present simulation study.

3 Attitude filter formulation

Recently, the authors proposed the GAME filter [16], a second-order optimal minimum-energy filter for

the kinematics of the attitude of a rigid body. Here second-order optimality refers to using a second-order

Taylor’s expansion approximation of the optimal value-function in the derivation of the filter. This section

provides a concise summary of the structure of the GAME filter [16] as well as introducing the notation used

in the paper.
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The attitude kinematics of a rigid-body are given by

Ẋ(t) = X(t)Ω×(t), X(0) = X0. (1)

Here X is an SO(3)-valued state signal with the unknown initial value X0 and Ω ∈ R
3 represents the angular

velocity of the moving body expressed in the body-fixed frame. The lower index operator (.)× : R3 −→ so(3)

denotes the skew-symmetric matrix

Ω× =

















0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

















. (2)

A rate-gyro sensor measures the angular velocity;

u(t) = Ω(t) +BΩvΩ(t) + b(t). (3)

The signals u ∈ R
3 and vΩ ∈ R

3 denote the body-fixed frame measured angular velocity and the input

measurement error, respectively. The coefficient matrix BΩ ∈ R
3×3 allows for different weightings for the

components of the unknown input measurement error v. We assume that BΩ is full rank and hence that

QΩ := BΩB
⊤
Ω is positive definite. In the case of the stochastic filters we will think, in a non-rigorous way, of

the noise vΩ as a unit variance Gaussian process where the matrix QΩ can be thought of as the covariance

of the actual noise process. A rigourous development would introduce noise processes in the continuous-

time model (3), however, to simplify the development we will simply use a discrete noise process in the

discretization model as is standard in the derivation of the stochastic invariant filters [1, 14, 25, 26]. For the

minimum-energy deterministic filter, the signal vΩ does not have a stochastic interpretation, it is simply an

auxiliary signal in the cost functional. For the constant gain observer design the noise signal is ignored.

The signal b(t) ∈ R
3 is an unknown slowly time-varying bias signal generated from

ḃ(t) = Bbvb(t), b(0) = b0, (4)

where Bb ∈ R
3×3 is a full rank weighting matrix known from the model with Qb := BbB

⊤
b positive definite.

The signal vb ∈ R
3 is a small unknown perturbation that is once again modeled as a stochastic process in

the discretization of the system for the stochastic filters, an auxiliary signal for the minimum-energy filter

and ignored for the observer design. The term b0 ∈ R
3 is an unknown initial bias.

8



Consider a collection of known direction vectors {ẙi} ∈ R
3 in the reference frame. Measuring these vectors

in the body-fixed frame provides partial information about the attitude X . Typically, magnetometers, visual

sensors, sun sensors and star trackers are deployed for this purpose. The following measurement model is

used

yi(t) = X(t)⊤ẙi +Diwi(t), i = 1, · · · , n (5)

The measurements yi ∈ R
3 are measurements of the ẙi in the body-fixed frame and the signals wi ∈ R

3 are

the unknown output measurement errors. The coefficient matrix Di ∈ R
3×3 allows for different weightings

of the components of the output measurement error wi. Again, assume that Di is full rank and Ri := DiD
⊤
i

is positive definite. In this case the noise wi is straightforward to interpret as a unit variance Gaussian

measurement noise. In the case of minimum energy filtering it is treated as an auxiliary signal despite its

stochastic characteristic while for the observer design it is ignored.

Consider the cost functional

J(t; X0, b0, vΩ|[0, t], vb|[0, t], {wi|[0, t]}) =
1

2
trace

[

(I −X0)K
−1
X0

(I −X0)
⊤
]

+
1

2
b⊤0 K

−1
b0

b0 +
1

2

∫ ⊤

0

(

v⊤ΩvΩ + v⊤b vb +
∑

i

w⊤
i wi

)

dτ,

(6)

in which KX0
,Kb0 ∈ R

3×3 are symmetric positive definite matrices. In the case of minimum-energy filtering,

the cost (6) can be thought of as a measure of the aggregate energy stored in the unknown initialisation and

measurement signals of (1), (3), (4) and (5). In the case of the stochastic filters this cost functional would

be related to an expected value of a log-likelihood cost functional, although, the derivations of the stochastic

attitude filters considered [1, 14, 25, 26] do not work from first principles.

In practice, the most common representation used for implementation of attitude estimation algorithms

is the unit-quaternion representation. Unit quaternions lead to more efficient and more robust numerical

implementations of the algorithms due to the simple renormalization operation to preserve the representation

constraint. Moreover, unit quaternions do not have the singularity issue that is associated with many other

rotation representations. Unit quaternions suffer from non-uniqueness of the representation, however, this

issue has been well discussed in the literature and does not pose practical issues for a careful implementa-

tion [2]. Finally, algorithms such as the MEKF or the USQUE require the unit quaternion representation.

For these reasons, we will use the unit quaternion representation to express and compare all the algorithms
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considered. Details on the unit quaternions, using the notation in this paper, can be found in the appendix

of Mahony et. al [17].

The attitude kinematics Ẋ = XΩ×, in the unit quaternions form is

q̇ =
1

2
A(Ω)q, (7)

where Ω ∈ R
3 and

A(γ) :=









0 −Ω⊤

Ω −Ω×









. (8)

The vectorial measurements yi = X⊤ẙi +Diwi, can be written as

yi = q−1 ⊗ p(̊yi)⊗ q +Diwi, (9)

in quaternion notation. Here p(Ω) = (0,Ω)⊤ with inverse projection p† such that p†(p(Ω)) = Ω.

The basic structure of the continuous-time estimation algorithms considered is

˙̂q =
1

2
A
(

u− b̂− Pa∆
)

q̂, (10a)

where b̂ is the estimate of the bias b given from

˙̂
b = P⊤

c ∆, (10b)

with initial conditions b̂(0) = 0, q̂(0) = 1. The innovation term ∆ is defined as

∆ :=
∑

i

(R−1
i (ŷi − yi))× ŷi. (10c)

where we recall that Ri := DiD
⊤
i . The gains Pa and Pc are symmetric 3×3 matrices updated from a Riccati

like equation. For example, in the case of the GAME filter [16], and recalling QΩ := BB⊤, Qb := BbB
⊤
b , the

Riccati equation in continuous time is written [16]

Ṗa = QΩ + 2Ps(Pa(2(u− b̂)− Pa∆)×) + Pa(E − S)Pa − P⊤
c − Pc,

Ṗc = −(u− b̂− Pa∆)×Pc + Pa(E − S)Pc − Pb,

(10d)

where the gain Pb is given from

Ṗb = Qb + Pc(E − S)Pc, (10e)
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with

S :=
∑

i

(ŷi)
⊤
×R

−1
i (ŷi)×, E := trace(C)I − C, C :=

∑

i

Ps(R
−1
i (ŷ − yi)ŷ

⊤
i ). (11)

Here Pa(0) = (trace(KX0
)I − KX0

)−1 where KX0
is a known variable from the cost function. The vector

ŷ = q̂−1⊗p(̊yi)⊗q̂ is analogous to to (9) and the operator Ps is a symmetric projector defined in equation (14)

below.

The matrix

P =









Pa Pb

P⊤
b Pc









contains the full gain matrix information including both the attitude and bias states. It is an interesting

feature of all the attitude filtering algorithms that the matrix Pb is not required to implement the filter

update equations (10a) and (10b). It is of course, coupled in the differential Riccati equation (10d) and

(10e) and must be computed. However, it is natural to write the Riccati equation in decoupled form with

separate matrices Pa, Pb, Pc. Although equations (10) are specific to the GAME filter, the same notation

and structure has been used for all the filters in this paper.

In order to numerically compare the filters, discrete-time implementations of the continuous-time filters

are required. This is not a trivial task in attitude filtering (and similar problems) as the Lie group config-

uration of the underlying state space has to be preserved during the numerical computation. In practice,

at least when the time step considered is small compared to the motion of the vehicle, the usual approach

taken is to use a simple Lie group Euler numerical integration. Assuming a small time step dt, then Ω is

approximately constant on the time period [kdt, (k + 1)dt] for k ∈ N. Denote this value by Ωk. Then the

exact integration of (7) yields

qk+1 =
1

2
exp(dtA(Ωk))q. (12)

This numerical integrator is used for the attitude state (10a). The bias observer (10b) as well as the Riccati

equations (10d) and (10e) live in linear vector spaces and are implemented using a classical Euler iteration.

The same simple numerical integration scheme is used for all the filters in this paper since the focus is on a

comparison of the performance of the different filter architectures and not on the numerical implementation.
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4 Discretized Implementations of the Attitude Filters Selected for

the Simulation Study

In this section unit quaternion discretized implementations of the attitude kinematics (1) and the filters

selected for our simulation study are provided in Tables 2 to 7 below. The following notation is instrumental

in these formulations.

Recall that the set of skew symmetric matrices is denoted by so(3) and is the Lie-algebra of SO(3). The

operation (·)× is given by (2) and provides the isomorphism between R
3 and so(3). The inverse operator

vex : so(3) −→ R
3 extracts the skew coordinates, vex(Ω×) = Ω.

Denote a symmetric positive semi-definite matrix by B ≥ 0 (a symmetric positive definite matrix is

denoted by B > 0). The seminorm ‖.‖R : R3×3 −→ R
+
0 is given by

‖M‖R :=

√

1

2
trace(MRM⊤), (13)

where R ∈ R
3×3 ≥ 0. Note that if R > 0 then ‖M‖R coincides with the Frobenius norm of MR1/2. The

symmetric projector Ps is defined by

Ps(M) := 1/2(M +M⊤). (14)

The skew-symmetric projector Pa is defined by

Pa(M) := 1/2(M −M⊤). (15)

Note that for every A ∈ so(3), M ∈ R
3×3 and S = S⊤ ∈ R

3×3 ,

trace(APs(M)) = 0, trace(Ps(SA)) = 0. (16)
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Kinematics

q(k + 1) = 1
2 exp(dtA(Ω(k)))q(k), q(0) = q0,

A(Ω(k)) =









0 −Ω(k)⊤

Ω(k) −Ω(k)×









Gyro Measurements
u(k) = Ω(k) + b(k) +BΩvΩ(k),

QΩ = BΩB
′
Ω

Bias Model b(k + 1) = b(k) + dt[Bbvb(k)], Qb = BvB
′
v

Vector Measurements

yi(k) = p†(q(k)−1 ⊗ p(̊yi)⊗ q(k)) +Diwi(k),

Ri = DiD
′
i,

p(̊yi) =









0

ẙi









, p†(p(̊yi)) = ẙi

Table 2: Discrete Attitude Kinematics and Measurements
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Attitude Observer

q̂(k + 1) =
1

2
exp(dtA[u(k)− b̂(k) + Pa(k)∆(k)])q̂(k),

∆(k) =
∑

i

ŷi(k)× (R−1
i (ŷi(k)− yi(k))),

ŷi(k) = p†(q̂(k)−1 ⊗ p(̊yi)⊗ q̂(k)), q̂(0) = [1 0 0 0]⊤

Bias Observer b̂(k + 1) = b̂(k) + dt[Pc(k)
⊤∆(k)], b̂(0) = [0 0 0]⊤,

Riccati Gains

Pa(k + 1) = Pa(k) + dt[QΩ + 2Ps[Pa(k)(u(k) − b̂(k) −

1
2Pa(k)∆(k))× − Pc(k)] + Pa(k)(E(k)− S(k))Pa(k)],

Pc(k + 1) = Pc(k) + dt[−(u(k) − b̂(k) − 1
2Pa(k)∆(k))×Pc(k) +

Pa(k)(E(k) − S(k))Pc(k)− Pb(k)],

Pb(k + 1) = Pb(k) + dt[Qb + Pc(k)(E(k)− S(k))Pc(k)],

S(k) =
∑

i(ŷi(k))
⊤
×R

−1
i (ŷi(k))×,

E(k) = trace(C(k))I − C(k),

C(k) =
∑

i Ps(R
−1
i (ŷi(k)− yi(k))ŷ(k)

⊤
i ),

Table 3: GAME Filter
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Attitude Observer

q̂(k + 1) =
1

2
exp(dtA[u(k)− b̂(k) + Pa(k)∆(k)])q̂(k),

∆(k) =
∑

i

ŷi(k)× (R−1
i (ŷi(k)− yi(k))),

ŷi(k) = p†(q̂(k)−1 ⊗ p(̊yi)⊗ q̂(k)), q̂(0) = [1 0 0 0]⊤

Bias Observer b̂(k + 1) = b̂(k) + dt[Pc(k)
⊤∆(k)], b̂(0) = [0 0 0]⊤,

Riccati Gains

Pa(k + 1) = Pa(k) + dt[QΩ + 2Ps[Pa(k)(u(k)− b̂(k))× − Pc(k)]−

Pa(k)S(k)Pa(k)],

Pc(k+1) = Pc(k) + dt[−(u(k)− b̂(k))×Pc(k)−Pa(k)S(k)Pc(k)−

Pb(k)],

Pb(k + 1) = Pb(k) + dt[Qb − Pc(k)S(k)Pc(k)],

S(k) =
∑

i(ŷi(k))
⊤
×R

−1
i (ŷi(k))×,

Table 4: MEKF
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Attitude Observer

q̂(k + 1) =
1

2
exp(dtA[u(k)− b̂(k) + Pa(k)∆(k)])q̂(k),

∆(k) =
∑

i

ẙi × (R−1
i (̊yi − ŷi(k))),

ŷi(k) = p†(q̂(k)⊗ p(yi(k))⊗ q̂−1(k)), q̂(0) = [1 0 0 0]⊤

Bias Observer b̂(k+1) = b̂(k)+dt[q̂(k)−1⊗p(Pc(k)
⊤∆(k))⊗q̂(k)], b̂(0) = [0 0 0]⊤,

Riccati Gains

Pa(k + 1) = Pa(k) + dt[QΩ − 2Ps[Pc(k)]− Pa(k)S(k)Pa(k)],

Pc(k+1) = Pc(k)+dt[−Pc(k)q̂(k)⊗p((u(k)− b̂(k))×)⊗ q̂−1(k)−

Pa(k)S(k)Pc(k)− Pb(k)],

Pb(k+1) = Pb(k)+dt[2Ps(q̂(k)⊗p((u(k)−b̂(k))×)⊗q̂−1(k)Pb(k)+

Qb − Pc(k)S(k)Pc(k)],

S(k) =
∑

i(̊yi(k))
⊤
×R

−1
i (̊yi(k))×,

Table 5: RIEKF (GMEKF)
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Parameters x̂+(0) = [0⊤ b̂⊤0 ]⊤, a = 1, f = 4, λ = 1, n = 6,

Discrete Qk

Qk = dt
2









QΩ − dt2

6
Qb 03×3,

03×3 Qb









,

Sigma Points σk ← 2n columns from±
√

(n+ λ)[P+
k

+Qk], Xk(0) = x̂+
k
, Xk(i) = σk(i) + x̂+

k
,

Error Quaternions
δq+4k

(i) =
−a‖X

δp
k

(i)‖2+f

√

f2+(1−a2)‖X
δp
k

(i)‖2

f2+‖X
δp
k

(i)‖2
, δ̺+

k
(i) = f−1[a+ δq+4k

(i)]X δp
k

(i),

δq+
k
(i) = [δq+4k (i) δ̺

+⊤

k
(i)]⊤, i = 1, 2 · · · , 12,

Sigma Quaternions q̂+
k
(0) = q̂+

k
,, q̂+

k
(i) = δq+

k
(i) ⊗ q̂+

k
,

Propagation

q̂−
k+1(i) =

1

2
exp(dtA[u(k) − X b̂

k
(i)])q̂+

k
(i), i = 0, 1, · · · , 12,

δq−
k+1(i) = q̂−

k+1(i) ⊗ (q̂−
k+1(0))

−1, δq−
k+1(0) = [1 0 0 0]⊤,

[δq−4k+1
(i) δ̺−

⊤

k+1(i)]
⊤ = δq−

k+1(i), X
δp
k+1(i) = f

δ̺
−

k+1
(i)

a+δq
−

4k+1
(i)

, X δp
k+1(0) = 0, X b̂

k+1(i) = X
b̂
k
(i),

Prediction
x̂−
k+1 = 1

n+λ

{

λXk+1(0) +
1
2

∑2n
i=1 Xk+1(i)

}

,

P−
k+1 = 1

n+λ

{

λ[Xk+1(0) − x̂−
k+1][Xk+1(0) − x̂−

k+1]
⊤ + 1

2

∑2n
i=1[Xk+1(i)− x̂−

k+1][Xk+1(i) − x̂−
k+1]

⊤
}

+Qk,

Mean Observations
γk+1(i) =

















p†(q̂−
k+1(i)

−1 ⊗ p(̊y1)⊗ q̂−
k+1(i))

p†(q̂−
k+1(i)

−1 ⊗ p(̊y2)⊗ q̂−
k+1(i))

...

















, ŷ−
k+1 = 1

n+λ

{

λγk+1(0) +
1
2

∑2n
i=1 γk+1(i)

}

,

Covariance Update

P
yy
k+1 = 1

n+λ

{

λ[γk+1(0)− ŷ−
k+1][γk+1(0) − ŷ−

k+1]
⊤ + 1

2

∑2n
i=1[γk+1(i) − ŷ−

k+1][γk+1(i) − ŷ−
k+1]

⊤
}

,

P νν
k+1 = P

yy
k+1 +Rk+1,

P
xy
k+1 = 1

n+λ

{

λ[Xk+1(0) − x̂−
k+1][γk+1(0) − ŷ−

k+1]
⊤ + 1

2

∑2n
i=1[Xk+1(i)− x̂−

k+1][γk+1(i)− ŷ−
k+1]

⊤
}

Update x̂+
k+1 = x̂−

k+1 + P
xy
k+1(P

νν
k+1)

−1(yk+1 − ŷk+1), P+
k+1 = P−

k+1 − P
xy
k+1(P

νν
k+1)

−⊤P
xy
k+1,

Quaternion Update
x̂+
k+1 = [δp⊤ b̂+

⊤

]⊤, δq+4k+1
=

−a‖δp‖2+f
√

f2+(1−a2)‖δp‖2

f2+‖δp‖2
,

δ̺+
k+1 = f−1[a+ δq+4k+1

]δp, δq+
k+1 = [δq+4k+1

δ̺+
⊤

k+1]
⊤, q̂+

k+1 = δq+
k+1 ⊗ q̂−

k+1

Table 6: USQUE
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Attitude Observer

q̂(k + 1) =
1

2
exp(dtA[u(k)− b̂(k) + kP∆(k)])q̂(k),

∆(k) =
∑

i

yi(k)× ŷi(k),

ŷi(k) = p†(q̂(k)−1 ⊗ p(̊yi)⊗ q̂(k)), q̂(0) = [1 0 0 0]⊤

Bias Observer b̂(k + 1) = b̂(k)− dt[kI∆(k)], b̂(0) = [0 0 0]⊤

Table 7: CGO
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5 Comparison Study

In this section, multiple simulated experiments are presented that compare the filtering methods considered

in Section 2.

5.1 Case 1: Measurement Errors Expected from Low-Cost UAV Sensors

The first experiment considered simulates attitude estimation for a low cost unmanned aerial vehicle (UAV)

system for which the measurement errors are relatively large. It is also assumed that the rotation and the

bias initialization errors are large, as is the case when using low cost MEMS gyros such as the popular

InvenSense MPU-3000 family. The simulation parameters are summarized in Table 8. The GAME filter

(Table 3) is compared against the MEKF (Table 4), the RIEKF (Table 5), the USQUE (Table 6) and the

CGO (Table 7) that are explained in detail in Section 2.

Simulated attitude kinematics and measurements (see Table 2) are considered with the following parame-

ters that are also summarized in Table 8. A sinusoidal input Ω = [sin(2π15 t) −sin(2π18 t+π/20) cos(2π17 t)] drives

the true trajectory q. The input measurement errors v and vb are Gaussian zero mean random processes

with unit variance. The coefficient matrix B is chosen so that the signal Bv has a standard deviation of

25 degrees per ‘second’. The bias variation is adjusted by Bb such that Bbvb has a standard deviation of

0.1 degrees per ‘second’ squared. The system is initialized with a unit quaternion representing a rotation

with standard deviation of stdq0 = 60 degrees and an initial bias with standard deviation of stdb0 = 20

degrees per ‘second’. We assume that two orthogonal unit reference vectors are available. We also consider

Gaussian zero mean measurement noise signals wi with unit standard deviations. The coefficient matrices

Di are chosen so that the signals Diwi have standard deviations of 30 degrees. Although the two filters do

not have access to the noise signals vΩ, vb and wi themselves, they have access to the matrices QΩ = BB⊤,

Qb = BbB
⊤
b and Ri = DiD

⊤
i . The filters are simulated using zero initial bias estimates and using the identity

unit quaternion as their initial quaternion estimate.

The following filter initializations are considered that are also summarised in Table 9. The initial

quaternion and bias gain matrices of the USQUE are chosen according to the variance of the system’s
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initial quaternion in radians Pa(0) = std2q0I3×3 and the variance of the system’s initial bias in radians

per ‘seconds’ Pb(0) = std2b0I3×3. The initial quaternion and bias gain matrices of the GAME filter, the

MEKF and the RIEKF are chosen according to the inverse variance of the system’s initial quaternion in

radians Pa(0) = 1
std2

q0

I3×3 and the inverse variance of the system’s initial bias in radians per ‘seconds’

Pb(0) =
1

std2
b0

I3×3 as these filters are in the information form. The coupling initial gain is considered as the

zero matrix Pc(0) = 03×3 for all the filters. The CGO is initialized with kp = 1 and kI = 0.3 as in [17].

Time Step 0.001 (s)

Simulation Time 50 (s)

Angle of Rotation Initialization

Error

N ∼ (0, 602)◦

Bias Initialization Error N ∼ (0, 202)
◦

s

Reference Directions ẙ1 = [1 0 0], ẙ2 = [0 1 0]

Input signal Ω = [sin(2π15 t) − sin(2π18 t+ π/20) cos(2π17 t)]
rad
s

Input error BΩvΩ N ∼ (0, 252)
◦

s

Bias Variation Bbvb N ∼ (0, 0.12)
◦

s2

Measurement error Diwi N ∼ (0, 302)◦

Table 8: Simulation Parameters for the UAV Situation Case 1

Figures 1 and 3 show the performance of the GAME filter compared against the MEKF, the RIEKF,

the USQUE and the CGO in the Case 1 experiment. We have performed a Monte-Carlo simulation and the

RMS of the estimation errors of the two filters are shown for 100 repeats.
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USQUE Pa(0) = std2q0I3×3, Pb(0) = std2b0I3×3, Pc(0) = 03×3

GAME, MEKF, RIEKF Pa(0) =
1

std2
q0

I3×3, Pb(0) =
1

std2
b0

I3×3, Pc(0) = 03×3

CGO kp = 1, kI = 0.3

Table 9: Initial Filter Gain Matrices for the UAV Situation Case 1

Figures 1 and the zoomed version (Figure 2) indicate that the RMS of the rotation angle estimation error

of the proposed GAME filter rapidly converges towards zero in the transient period and also maintains the

lowest error compared to the rest of the filters in the asymptotic response. Figure 3 shows that the GAME

filter also has the lowest asymptotic bias estimation error compared to the bias estimation error of all the

other filters.

Note that the initial peak in the angle error of the GAME filter, the MEKF and the RIEKF is associated

with the period where the bias estimates of these filters are not accurate enough yet. The adaptive nature

of these filters is allowing a higher uncertainty in the angle estimates until a reasonable bias estimate is

obtained which is then used to achieve an accurate asymptotic angle estimate. The bias error of these filters

in Figure 3 is showing the peaking phenomenon that is also seen in a high-gain observer. This is not the

case for the USQUE which has the fastest angle estimation but the slowest bias estimation. This is due to

the fact that the USQUE is setting a high gain for its angle observer and a low gain for its bias observer

that leads to the amplified noise on the angle estimation error of the USQUE in Figure 1. The CGO on the

other hand is not an adaptive filter but it has an asymptotically convergent estimation error that is a priori

adjusted through the gains kp and kI .

A key aspect of the comparison is the bias estimation part and its effect on the angle estimation perfor-

mance of the filters. While bias estimation is a practical requirement, it was observed that excluding the bias

and applying proper tuning to the filters leads to little difference in the transient and asymptotic behaviour

of the filters. Figure 4 demonstrates an instance of the previous simulation where no bias is considered. It

was easily possible to find tuning parameters that yield almost identical transient and asymptotic behaviours
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of all the competing filters except the constant gain observer (CGO). The CGO in this case has to trade-off

between the fast transient behaviour and the asymptotic estimation error. A higher gain results in the faster

transient convergence, however, with a larger asymptotic estimation error. This problem is not present in

the other filters as their gains are adjusted dynamically by the filter.

Also note that the RIEKF is in fact outperforming the MEKF as was noted in [14] too. It is interesting

that the CGO has the second lowest estimation error with the lowest computational cost. Of course the

downside of the CGO is that it needs exact tuning depending on the information about the true attitude

trajectory that might not always be available a priori. The USQUE has the fastest angle convergence to a

relatively low error. However, the noisy asymptotic performance (which might be due to lack of complicated

tuning in our experiments), very slow bias estimation and the heavy computational cost of the USQUE

compared to the other filters considered makes the USQUE not desirable for the UAV application considered.

This argument is further investigated in § 5.3 below.

5.2 Case 2: Measurement Errors Expected in a Satellite

In this experiment much smaller measurement error signals are considered as is the case for a satellite

attitude filtering problem. The simulation parameters are according to the reference [35] and are described

in Table 10. Note that the angular velocity input of the attitude kinematics has a much smaller frequency

compared to the UAV case as the movement of a satellite is restricted to an earth orbit.

The initial gains of the filters are chosen according to Table 11. Note that these values are not exactly

according to the statistics of the initialization errors of the system, as was the case in our previous experiment.

This is to avoid singularities that are due to the fact that the numerical values of some simulation parameters

are too small and close to the computational limits of the MATLAB programming platform.

Figures 5 and 6 show the performance of the GAME filter compared against the MEKF, the RIEKF, the

USQUE and the CGO in the Case 2 experiment. Note that the figures shown are due to a single repeat of

an experiment that is typical for the results seen in more repeats. In this case the small frequency of the

angular velocity input leads to a slow dynamics of the angle trajectory. Due to this slow dynamics and also

due to the small measurement errors considered, the estimation errors of all the filters converge towards zero
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Figure 1: Case 1: The RMS of the estimation error in angle of rotations for a UAV simulation setup. Note

that the angle axis is in logarithmic scale.
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Figure 2: Case 1: The RMS of the estimation error in angle of rotations for a UAV simulation setup.

Zoomed on the asymptotic error of the GAME filter, the MEKF and the RIEKF. Note that the angle axis

is in logarithmic scale.
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Figure 3: Case 1: The RMS of the bias estimation error for a UAV simulation setup. Note that the bias axis

is in logarithmic scale.
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Figure 4: Case 1: The estimation error in angle of rotations for a UAV simulation setup with no bias. Note

that in this case it is easily possible to obtain similar convergence behaviour among the filters.
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Time Step 0.001 (s)

Simulation Time 50 (s)

Angle of Rotation Initialization

Error

N ∼ (0, 602)◦

Bias Initialization Error N ∼ (0, 202)
◦

s

Reference Directions ẙ1 = [1 0 0], ẙ2 = [0 1 0]

Input signal Ω = sin( 2π
150 t)[1 − 1 1]

◦

s

Input error BΩvΩ N ∼ (0, 0.316232)µ rad
s

Bias Variation Bbvb N ∼ (0, 0.0316232)n rad
s

Measurement error Diwi N ∼ (0, 12)◦

Table 10: Simulation parameters for a satellite situation

rapidly. The GAME filter outperforms the other filters in achieving the lowest asymptotic estimation error.

The USQUE converges very fast although its asymptotic estimation error is noisy as was the case in the

UAV experiment.

5.3 Gain Scaling

One can choose different gain scalings for a particular filter. A higher scaled gain can result in faster

convergence of a filter with the disadvantage of larger asymptotic estimation error. Depending on the

application, one has to trade-off between the transient and the asymptotic performance of a filter. The

following two examples are demonstrations of this trade-off seen in the results above.
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Figure 5: Case 2: The estimation error in angle of rotations for a satellite simulation setup. Note that the

angle axis is in logarithmic scale.
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Figure 6: Case 2: The bias estimation error for a satellite simulation setup. Note that the bias axis is in

logarithmic scale.
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USQUE Pa(0) = std2q0I3×3, Pb(0) = std2b0I3×3, Pc(0) = 03×3

GAME, MEKF, RIEKF Pa(0) =
10−1

std2
q0

I3×3, Pb(0) =
10−9

std2
b0

I3×3, Pc(0) = 03×3

CGO kp = 10, kI = 2

Table 11: Initial Filter Gain Matrices for the Satellite Case 2

As was apparent in Figures 1 and 3, the USQUE is inherently using a higher angle gain than the other

filters. In fact, zooming into the asymptotic angle estimation error graph of the USQUE, it is apparent

that the estimation error is approximately 30 times lager than the estimation error of the other filters (See

Figure 7). Consider using a scale factor of 30 multiplying gain Pa of the GAME filter. As can be seen

in Figure 7 the estimation errors of the two filters are now almost identical, confirming that the USQUE

algorithm is rendering an undesirable scaling in its angle gain Pa that, although it results in a very fast angle

estimation also results in a noisy asymptotic estimation error. We have tried to account for this effect in

the USQUE algorithm by means of simple tuning. However, due to the involved nature of this algorithm

(Table 6) it is unclear how to compensate for the clear scaling issue in the gain tuning - this is a clear

disadvantage of the USQUE algorithm. It is worth noting, that the bias estimation of the GAME filter is

still much faster than that of the USQUE indicating the advantage of the GAME filter over the USQUE

even in this case.

The authors believe that the original published formulation of the RIEKF [14] has two typographic errors

– details are provided in the Appendix section. As a result, the originally published RIEKF has a larger gain

than the RIEKF considered here (Table 5). This is investigated in the following simulation comparing the two

formulations of the RIEKF. As can be seen in Figure 9, the original RIEKF has a faster decaying convergence

error. However the asymptotic error of the original RIEKF is approximately two times more noisy than the

alternative formulation, confirming the gain difference of the two filters. This point is important since the

relative difference in gain scaling is of the same order as the performance advantage of the RIEKF over the

MEKF.
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Figure 7: Case 1: The USQUE is compared against the GAME filter when the angle gain of the GAME Pa

is multiplied by 30. Note that the angle axis is in logarithmic scale.
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Figure 8: Case 1: The USQUE is compared against the GAME filter when the angle gain of the GAME Pa

is multiplied by 30. Note that the bias axis is in logarithmic scale.
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Figure 9: Case 1: The gain difference between the RIEKF in [14] and the RIEKF (Table 5). Note that the

angle axis is in logarithmic scale.
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6 Conclusions

In conclusion, the second-order optimal minimum-energy (or the Geometric Approximate Minimum-Energy,

GAME) filter proves to be highly robust both in situations with large measurement errors and fast attitude

dynamics, such as the case of a low cost UAV, and also in a situation with small measurement errors and slow

attitude dynamics such as in the case of a satellite. In fact in both cases, it was shown in the previous section

that the GAME filter outperforms the state-of-the-art attitude filters such as the Multiplicative Extended

Kalman Filter MEKF, the Right-Invariant Extended Kalman Filter RIEKF, the UnScented QUaternion

Estimator USQUE and the Constant Gain Observer CGO.

The difference between the MEKF and RIEKF is subtle. In low noise situations the two algorithms are

essentially equivalent as can be seen from the satellite simulation. In the case of high noise it is clear that

the more stable noise representation associated with the RIEKF leads to better conditioning of the gain and

overall improved performance.

The USQUE as published is very fast in angle estimation but slow in bias estimation. Moreover, the

asymptotic angle estimation error of the USQUE is very noisy due the high gain of the angle error. It is clear

that the tuning for the USQUE is not optimal, however, due to the complexity of the algorithm it is difficult

to see how to improve the gain tuning. Given the relative performance of the GAME, MEKF and RIEKF,

along with the computational cost of the USQUE, it is unlikely that the effort required to tune the USQUE

would be worth pursuing. A key observation from this study, however, is that comparison of attitude filters

must consider both the transient and the asymptotic behaviours and that any filter can produce improved

transient behaviour if the filter gain is increased.

The CGO yields desirable low estimation errors with minimal computational cost. However, the gains of

the CGO need to be tuned a priori and the performance obtained here was heavily based on having used

the GAME filter to obtain optimal asymptotic gains for the CGO. There is a clear penalty in transient

convergence for the CGO compared to the variable gain filters, demonstrating the fundamental advantage

of optimal filtering. Against this, the constant gain observer does not pose any risk on having an unstable

Riccati equation and the computational complexity is very low. The CGO clearly remains a very viable filter

option in a range of important applications.
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Appendix: RIEKF

Note that the formulation provided here for the RIEKF is different to the one given in the reference [14] in

two aspects. First, the state error in [14] is modeled two times larger, giving the filter formulation a factor

of 2 higher gain. Secondly, there seems to be a factor of 1
2 inconsistency in the A matrix calculation of the

RIEKF [14] that leads to occasional singularities in the simulation results of the RIEKF. The authors believe

that both these differences are minor typographical errors in the original paper [14]. We provide an updated

derivation of RIEKF in the following discussion.

The RIEKF formulation considers the quaternion system model















































q̇ =
1

2
q ⊗ Ω,

u = Ω− 2q−1 ⊗ (BΩvΩ)⊗ q + b,

ḃ = q−1 ⊗ (BBvb)⊗ q,

yi = q−1 ⊗ (̊yi +Diwi)⊗ q.

(17)

Note that the state and the output errors are modelled in the inertial frame which is different to the

conventional modelling of errors in the body-fixed frame. The RIEKF then is































˙̂q =
1

2
q̂ ⊗ (u − b̂+ 2q̂−1 ⊗ (

∑

iKq (̊yi − ŷi)⊗ q̂),

ŷi = q̂ ⊗ (yi)⊗ q̂−1,

˙̂
b = q̂−1 ⊗ (

∑

iKb(̊yi − ŷi)⊗ q̂.

(18)

Consider the errors














q̃ = q̂ ⊗ q−1,

b̃ = q ⊗ (b̂ − b)⊗ q−1.

(19)

The error system is given by































˙̃q = − 1
2 q̃ ⊗ (b̃) + (

∑

i Kq (̊yi − ŷi)⊗ q̂)⊗ q̃ − q̃ ⊗ (BΩvΩ),

˙̃
b = +2(BΩvΩ)× b̃+ q̃−1 ⊗ (

∑

i Kb(̊yi − ŷi)⊗ q̃ −BBvb + (q̃−1 ⊗ (ũ)⊗ q̃)× b̃,

ũ = q̂−1 ⊗ (u− b̂)⊗ q̂.

(20)

Next, linearize the error system using q̃ −→ [1, 12δq̃]
⊤ and b̃ −→ δb̃, and neglect the quadratic terms in noise

and infinitesimal state error similar to [14]. Note that the factor of 1
2 in the linearized quaternion is not
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considered in the original paper [14].









˙δq̃

˙
δb̃









= (A−KC)









δq̃

δb̃









−









BΩvΩ + (
∑

iKqDiwi)

Bbvb + (
∑

i KbDiwi)









, (21)

where

A =









0 −I

0 ũ×









, C = (2(̊yi)× 0) ,K = −[Kq,Kb]
⊤. (22)

Then similar to the EKF the full filter is realized using






























K = PC⊤R−1,

Ṗ = AP + PA⊤ +Q− PC⊤R−1CP,

Q = diag(Qω, Qb).

(23)

Note that in [14] there is a typographic error in the matrix A with an extra factor of 1
2 multiplying the

identity matrix I.

If the state noise is considered without a factor of two then














































q̇ =
1

2
q ⊗ Ω,

u = Ω− q−1 ⊗ (BΩvΩ)⊗ q + b,

ḃ = q−1 ⊗ (BBvb)⊗ q,

yi = q−1 ⊗ (̊yi +Diwi)⊗ q,

(24)

and the matrix C of the RIEKF is modified to

C = ((̊yi)× 0) , (25)

the version used in Table 5.
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