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SUMMARY

There are many unknown causes that increase the rate of corneal graft rejection. In bilateral cases,
some of these unknown causes are common, and some are individual factors. In this paper, we use
a correlated frailty model to analyse risk factors for bilateral corneal graft in Keratoconus. Applying
the piecewise constant baseline hazard model, we have performed a Bayesian analysis of the correlated
frailty model using the Markov chain Monte Carlo method. The correlated frailty model and the shared
frailty model are compared by deviance information criterion. The results show more accurate and better
�t for the correlated frailty model. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A corneal transplant, also known as a corneal graft or as penetrating keratoplasty (PK), in-
volves removal of the central portion of the diseased cornea and replacing it with a matched
donor’s button of cornea. Corneal grafts are performed on patients with damaged or scarred
cornea, which prevent acceptable vision. One common indication for corneal graft is Kerato-
conus. Keratoconus is a non-in�ammatory and usually bilateral disease of the cornea. Although
corneal graft for Keratoconus is highly successful, graft failure may occur. One of the most
frequent reasons for graft failure is graft rejection. Graft rejection may occur at any time but
it frequently occurs within few weeks to 20 years after corneal transplant surgery [1–4].
In this paper, we explore the risk factors for graft rejection in bilateral grafts in Keratoconus.

Here, the survival time is de�ned as the time elapsed between graft surgery and graft rejection.
For those grafts for which rejection has not occurred yet, the censored survival time is the
time elapsed between corneal graft surgery and the last date of examination. In the bilateral
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cases, the more damaged eye is treated �rst. Usually, the second eye will require a treatment
within a year or more. For bilateral grafts, many recipient-related and environmental factors are
common for each graft. So we expect survival times for each subject’s graft to be correlated.
There are numerous causes that increase the rate of graft rejection, many of them being

unknown. The unknown causes may involve recipient-related, donor-related, surgery-related
and environmental factors. For the widely used Cox proportional hazard model [5], unknown
causes lead to bias in the e�ect of other covariates. This problem can be overcome by mul-
tiplying the baseline hazard function by a random e�ect or frailty component. The modi�ed
model is known as the frailty model [6, 7]. One of the most popular frailty models is the
shared frailty model, which is used for modelling multivariate survival data [8]. In this model,
a shared unobservable quantity in the hazard induces a positive correlation among the survival
times. However, individual unknown risk factors such as donor- and surgery-related unknown
factors cannot be described by a shared frailty model. Yashin et al. [9] extended the shared
frailty model to allow di�erent but correlated frailty among observations within a group. The
extended model is known as correlated frailty model. The correlated frailty model can explain
two sources of variations (variation due to the unknown shared factors and variation due to
the unknown individual factors and hazard function) [10]. By using a correlated frailty model,
we can obtain more accurate parameter estimates and improve the model �t to the data [9, 11].
The goal of this paper is to study the e�ect of important, shared and individual unknown

factors on survival time of bilateral corneal graft by using a correlated frailty model. In
addition, the results will be compared to those of the shared frailty model. The paper is
organized as follows. In Section 2, we describe the motivating data from a retrospective
study. In Section 3, we brie�y describe the shared and correlated frailty models. In Section 4,
we develop a Bayesian analysis of the correlated frailty model by using Markov chain Monte
Carlo to estimate the parameters. In Section 5, we show the results of the analysis of data
described in Section 2. Finally, Section 6 provides some discussion.

2. THE STUDY DATA

The records of 119 patients who had bilateral corneal graft at Laba�nejad Hospital, Shahid
Beheshti University of Medical Sciences, Tehran, between 1983 and 2002 are considered. The
information included is time of operation, time of �rst rejection or time of last examination,
status of rejection, recipient-related factors including, sex, age at time of surgery, severe
ocular allergy, the extent of corneal vascularization and donor-related factors including fresh
or preserved in cornea solution donor cornea. The follow-up period ranged from 1 to 221
months with a mean of 43.9 months. The survival time (time lapsed between surgery and
rejection) ranged from 1.1 to 95 months with a mean of 12.5 months and median of 6.9
months. The period between the �rst and second graft was from 3.8 to 204 months with a
mean of 44.6 months.
During the study period, there were 54 rejections, 31 rejections on the �rst eye and 23

rejections on the second eye. There were 18 bilateral rejections (in nine patients) and 36
unilateral rejections. Figure 1 shows the Kaplan–Meier survival curve for all 238 grafts and
Figure 2 shows the Kaplan–Meier survival curve for the �rst and the second grafts.
Survival curves show high rate of rejection in the earlier months after surgery. There

are many risk factors for graft rejection that are not included in this study. While some
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Figure 1. Kaplan–Meier survival curve for all grafts.
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Figure 2. Kaplan–Meier survival curves for the �rst and second grafts.
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of these could have been recorded as explanatory variables, they are not available in this
retrospective study. We include an unmeasurable random variable to account for them. This
random variable is considered as the sum of individual and shared random e�ects. In this
study, the estimation of the magnitude of the individual random e�ects is more important
than shared e�ects, because none of the factors in the model are surgery-related and only one
of them is donor-related.

3. STATISTICAL MODEL

3.1. Shared frailty model

In this model, a shared unobservable quantity in the hazard induces a positive correlation
among the survival time (time to graft rejection) of the jth subject (graft) (j=1; 2) in the
ith group (patient) (i=1; : : : ; n).
In a shared frailty model, the conditional hazard function of Tij (rejection time for jth graft

in ith patient), given the unobservable frailty random variable Yi of the ith group (patient)
and �xed observed covariate vector xij, is assumed as

hij(t|yi; xij)=yih0(t) exp(x′
ij�);

i=1; : : : ; n

j=1; : : : ; ni

where h0(t) is an unknown baseline hazard function common to every subject (graft) and �
is the vector of �xed e�ect parameters. The shared frailty random variable Yi is assumed to
be independent and identically distributed for groups (patients), having some parametric dis-
tribution with unit mean (to obtain identi�ability). The gamma distribution is most commonly
used to model the frailty [12, 13].
In this paper we assume the Yi’s to be independent with

fYi(yi)=
1
�(�)

��y�−1i exp(−�yi); i=1; : : : ; n

Thus, higher values of �−1 signify larger variances for yi, consequently greater heterogeneity
among di�erent groups (patients) and larger positive correlation between two graft rejection
times for a patient.

3.2. Correlated frailty model

A bivariate extension of the shared frailty model is known as the correlated frailty model [9],
wherein the random frailty varies among individuals in each group, so the conditional hazard
function of Tij given the unobserved frailty random variable yij and �xed observed covariate
vector xij is

hij(t|yij; xij)=yijh0(t) exp(x′
ij�);

i=1; : : : ; n

j=1; : : : ; ni

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:2681–2693
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where it is assumed that

Yij=Wi + Zij

and Wi, Zi1; : : : ; Zini are mutually independently distributed variables.
Wi is a shared component for all subjects (grafts) in the ith group (patient i) and it generates

dependence among subjects, while Zi1; : : : ; Zini are individual components, generating only extra
variance. In this model, the individuals in each group have di�erent but correlated frailty.
The gamma distributions have been used for all components of frailty in the applications
of correlated frailty models. These distributions have been restricted to have the same scale
parameter ensuring a marginal gamma distribution with mean one for Yij. In this regard, we
assume the Wi’s to be independent with

fWi(wi)=
1

�(’)
�’w’−1

i exp(−�wi); i=1; : : : ; n

and Zij’s to be independent with

fZij(zij)=
1

�(�− ’)�
�−’z�−’−1

ij exp(−�zij);
i=1; : : : ; n

j=1; : : : ; ni

In our study, the shared component describes unknown recipient-related and environmental
factors and the individual component describes unknown donor- and surgery-related factors.

4. BAYESIAN ANALYSIS OF SURVIVAL MODEL

In this section, we develop a Bayesian analysis of frailty models for the correlated frailty.
Bayesian analysis of survival data using semi-parametric models requires modelling of a base-
line hazard function. In this study, we use a piecewise constant hazard model for modelling
the baseline hazard [14, 15]. We apply a partition of time of study into some intervals and
assume the hazard function to be constant in each interval.
The full Bayesian model consists of conditional survival model considered in the previous

section (correlated frailty model), and the prior distributions of the parameters and hyperpa-
rameters. We assume that the prior distributions for the �xed e�ects, the random e�ects, and
the parameters of baseline hazard function are independent of each other. The joint distribution
of the data and the parameters is given in the appendix, which is very complicated.
The analytical Bayes solution to the problem necessitates the determination of the posterior

distribution of the parameters, including the hyperparameters, conditional on the observed
data. Unfortunately, this is not possible to do analytically, nor is it practical to do numerically
because of higher dimension of the parameter space. However, we can �nd a Markov chain
that has the posterior as its long run distribution [16, 17]. Sampling from this Markov chain
after an adequate burn-in period will enable us to approximate a sample from the posterior.
The graphical modelling approach is used to specify the conditional distributions [18]. The
hierarchical structure of the model simpli�es the conditional distributions to be sampled from.
By using graphical modelling in a hierarchical model, the conditional distribution of one
node, given all the other nodes, is proportional to the product of the prior distribution of that
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node and the conditional distribution of all its direct child nodes and coparent nodes. The
Gibbs sampling, Metropolis algorithm, rejection sampling and free adaptive rejection sampling
have been applied for sampling from full conditional distributions [17, 19]. The conditional
distribution of the parameters and hyperparameters and a full illustration of sampling methods
are given in the appendix.
In all Metropolis algorithms, the normal proposal distribution is used and its variance is

manipulated for each node, in such a way that about 40 per cent of the candidates will be
accepted [20]. A program written in R software performs MCMC simulation, whose outputs
are fed into a Bayesian output analysis (BOA) program [21] for carrying out convergence
diagnostics and statistical analysis of Monte Carlo sampling outputs.
One problem arising in the implementation of the Markov chain Monte Carlo method is the

assessment of convergence. We have run three parallel chains with di�erent starting points
for 10 000 iterations. Then we have calculated modi�ed Gelman and Rubins [22] scale reduc-
tion factor R for each of the �xed e�ects parameters, the hyperparameters and the baseline
hazard parameters from the last 5000 iterations. Comparing between chain variations and
within chain variation, the scale reduction factor R measures how much improvement in the
estimates would be possible by increasing the number of iterations. The scale reduction factor
values were extremely close to 1. The largest R occurred for the parameter of random e�ect
’, and was 1.07. This indicates 5000 iterations would be a satisfactory burn-in period. We
found no evidence from the multiple chains that they are not converging to the same nodes.
At last we ran the chains for 20 000 iterations and used the last 15 000 samples after 5000
iterations for the burn-in period of each chains. This amounts to 45 000 iterations, for provid-
ing summaries posterior distributions of parameters. We also perform a similar Markov chain
Monte Carlo simulation to estimate the parameters of the shared frailty model. We present
comparison between the shared frailty model and the correlated frailty model for our data.
The comparison has been carried out using deviance information criteria (DIC) for the three
models. The DIC statistic introduced by Spiegelhalter et al. [23] is a Bayesian criterion for
model comparison. Let � include all parameters of a model and let D(�) be its deviance, then
the DIC is de�ned as

DIC=D(�) + pD

where D(�) is the posterior mean of the deviance of the model and it is obtained by using
the mean of monitored values of log likelihood after burn-in period and pD is de�ned as

pD =D(�)−D(�)
which is the di�erence between the posterior mean of the deviance and the deviance of the
posterior mean of parameter of interest.
The D(�) statistic is proposed as a Bayesian measure of �t or adequacy and pD statistic

is the e�ective number of parameters in a model and is suggested as a measure of complexity.
The model with the smallest value of DIC is suggested to be the preferred one.

5. RESULTS

As it is seen in Figures 1 and 2, the survival curve of graft rejection shows a higher re-
jection rate in the earlier months. This calls for small intervals in the earlier months, which
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Table I. Posterior summaries for the parameters of correlated frailty model.

Parameter Mean Median Standard Deviation 2.5 percentile 97.5 percentile

� 0.1488 0.1402 0.0432 0.0873 0.2691
’ 0.0576 0.0541 0.0248 0.0206 0.1254

Beta0 −3.5814 −3.6035 0.7673 −5.0459 −2.0557
Beta(Sex) −0.4918 −0.4738 0.7258 −1.9551 0.8842
Beta(Age-mean(age)) 0.0504 0.0491 0.0339 −0.0125 0.1201
Beta(Fresh cornea) −0.5441 −0.5541 0.6521 −1.8462 0.7527
Beta(Ocular allergy) 2.5820 2.4715 1.6112 −0.1955 6.2809
Beta(Vascularization) 2.4633 2.3552 1.2514 0.3245 5.4223

Lambda1 0.6926 0.5012 0.6337 0.0921 2.4112
Lambda2 1.1275 0.9358 0.7242 0.3076 3.0246
Lambda3 1.6517 1.4229 0.9774 0.5007 4.1761
Lambda4 1.3821 1.1746 0.8746 0.3628 3.6474
Lambda5 1.1346 0.9245 0.8132 0.2441 3.2928
Lambda6 0.9738 0.7435 0.7894 0.1445 3.0664
Lambda7 0.7809 0.5643 0.7362 0.0634 2.7814

would yield more precision in modelling the baseline hazard function. Thus, we partition the
study time into the following seven risk intervals measured in months: (06t¡2), (26t¡5),
(56t¡8), (86t¡15), (156t¡30), (306t¡60), and (606t¡221). The summaries of pos-
terior distributions for the correlated frailty model parameters are shown in Table I. It is
concluded that the extent of corneal vascularization is an important risk factor and the age of
the recipient and severe ocular allergy are, however, slightly signi�cant. The sex of reception
and fresh or preserved in cornea solution of donor cornea are not important in graft rejec-
tion in Keratoconus. The estimates of baseline hazard parameters show that the rejection rate
increases for the �rst three intervals, the highest rejection rate is in the third interval, and
then the rejection continues to drop for the remaining time in the study. The posterior means
of ’ and � show that the mean of shared random e�ect is 0.387 and the mean of individual
random e�ect is 0.613. The variance of the shared component is 2.60 and the variance of
individual component is 4.12. These values show that there is considerably more variability
due to individual unknown e�ects than to shared unknown e�ects.
Summaries of posterior distributions of the parameters of the shared frailty model are also

shown in Table II, which can be compared with Table I. Upon comparing the results shown
in Tables I, and II, one can conclude that interval estimates of �xed e�ects are narrower in
the shared frailty model compared to those from the correlated frailty model. The striking
di�erence is the estimate of the coe�cient of the age of recipient in the two models. The age
of the recipient at surgery is a more important risk factor in the shared frailty model than in
the correlated frailty model. This shows that the e�ect of age has been confounded with the
individual random e�ects.
Comparing the summary of posterior distribution of � in the two models indicates that

variance of random e�ect in the correlated frailty model is about three times of variance
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Table II. Posterior summaries for the parameters of shared frailty model.

Parameter Mean Median Standard Deviation 2.5 percentile 97.5 percentile

� 0.5230 0.4554 0.2646 0.2352 1.1736

Beta0 −4.2832 −4.2761 0.4630 −5.1320 −3.4076
Beta(Sex) −0.3826 −0.3653 0.4578 −1.3142 0.4635
Beta(Age-mean(age)) 0.0598 0.0590 0.0269 0.0085 0.1171
Beta(Fresh cornea) −0.4879 −0.4778 0.4072 −1.3048 0.3479
Beta(Ocular allergy) 1.8656 1.7905 1.1268 −0.1933 4.4960
Beta(Vascularization) 2.1023 2.0814 0.7262 0.7386 3.6141

Lambda1 0.8945 0.6847 0.7390 0.1378 2.8624
Lambda2 1.3673 1.1770 0.7725 0.4150 3.3120
Lambda3 1.7845 1.5605 0.9579 0.5848 4.2047
Lambda4 1.2831 1.0865 0.7892 0.3543 3.3565
Lambda5 0.9224 0.7333 0.6666 0.2016 2.7002
Lambda6 0.7036 0.5293 0.5897 0.1136 2.3426
Lambda7 0.5153 0.3422 0.5329 0.0397 1.9958

Table III. Results of DIC.

Model DIC pD D(�) D(�)

Shared frailty 598.4 51.6 495.2 546.8
Correlated frailty 526.1 66.3 393.5 459.8

of random e�ect in the shared frailty model, which means that the correlated frailty model
explains variability more e�ectively than the shared frailty model.
The result of comparison is presented in Table III and shows that the correlated frailty

model has better goodness of �t and has more complexity than the shared frailty model.
Overall, the DIC value for the correlated frailty model is smaller than the DIC value for
the shared frailty model, implying considerably better �t for correlated frailty model. This
con�rms that individual unknown factors such as unknown surgery- and donor-related factors
are very important in graft rejection for Keratoconus.

6. DISCUSSION

In this paper we have extended a Bayesian analysis of frailty model to the correlated frailty
model, using the Markov chain Monte Carlo method with application to rejection risks of
bilateral corneal grafts. We see that the correlated frailty model has better �t to our data
than the shared frailty model. In the shared frailty model, it is almost impossible to have
one short and one long survival time within a pair, but in the correlated frailty model, it
is possible to have such situation [10]. The shared frailty model describes only positive
correlation between two rejection times in the same patient and ignores the heterogeneity
due to unknown individual factors, underestimating the standard errors, and lead to narrower
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interval estimates than they should be. Correlated frailty model introduces the heterogeneity
into the model; thus the �xed e�ect estimates have slightly increased standard errors and
somewhat wider credible intervals than the corresponding credible intervals obtained by the
shared frailty model.
In our application, a speci�c form for the baseline hazard is not known, and therefore

a semi-parametric approach is applied. We use piecewise constant baseline hazard function,
but other baseline hazard functions such as gamma process [13, 24] and correlated prior pro-
cess [25] can be used. There is no clear-cut procedure for the choice of a partition. Some
authors have suggested equal length intervals [15]. In this study, partitioning of the time axis
has been carried out with the following consideration. The hazard function has a skewed shape
touching the time axis very fast. To preserve this character, we have chosen a partition based
on trial and error, which provides a piecewise constant estimate of hazard function, nearly
similar to the original one. Consideration of coarser or equal length partitions would lead to
an unstable estimate of hazard function. In such a case, it will not have a clear interpretation.
We have used DIC for comparing the model �tting. The most popular approach in Bayesian

literature for comparing models is the Bayes Factor [26]. However, the Bayes factor is gen-
erally quite sensitive to vague priors and is not applicable for our models, since we consider
some vague priors.
Although computationally intensive, Markov chain Monte Carlo is a useful technique for

estimating complex Bayesian models. In this paper, we used Gibbs sampling, Metropolis
algorithms, and rejection sampling for sampling from conditional distributions of the model
parameters. Convergence is determined by Gelman–Rubin convergence diagnostics. The use
of Monte Carlo methods in our model can provide a prediction of a future graft rejection for
a particular patient. One problem in our study is that we have considered survival times of
bilateral corneal grafts as parallel survival times. However, we must attend to this fact that
the second graft for each patient has been carried out after a period of time lapse from the
�rst graft. Hence further studies are needed to �nd a suitable model for our data.

APPENDIX A

To construct piecewise constant hazard model, we �rst construct a �nite partition of the time
axis, 0¡t1¡ · · ·¡tk¡∞, with all subjects (graft rejections) being either failed or censored
before tk . Thus, we have the k intervals I1 = [0; t1); I2 = [t1; t2); : : : ; Ik =[tk−1; tk), and we assume
the baseline hazard function is constant over each interval. Suppose �s is the value of hazard
function in the sth interval, then

h0(t)= �s; t ∈ Is=[ts−1; ts); s=1; : : : ; k
If gij is such that tij ∈ [tgij ; tgij+1) then, we set

h0(tij)= �gij+1

Let �s be the length of sth interval, �s= ts − ts−1, then the cumulative baseline hazard is

H0(tij)=
gij∑
s= 1

�s�s + (tij − tgij)�gij+1

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:2681–2693
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Let �ij be the indicator variable taking value 1 if the graft is rejected during the study
period and 0 if it is not rejected until the last examination. Let Dobs be the set of observations
consisting of (tij; �ij; xij) and let E be the set of random e�ects consisting of (wi; zij). Assuming
a non-informative censoring, then the complete likelihood is given as

L(�; �|E;Dobs)=
n∏
i=1

ni∏
j=1
[yijh0(tij)�ij]�ij exp(−yijH0(tij)�ij)

where �=(�1; : : : ; �k), H0(t) is the cumulative baseline hazard function, and �ij= exp(x′
ij�).

The joint distribution of the data and the parameters is

�(E;Dobs; �; �; ’; �) = L(�; �|E;Dobs) ·
[

n∏
i=1
f(wi|�; ’)

]

×
[

n∏
i=1

ni∏
j=1
f(zij|�; ’)

]
· �(�) · �(’) · �(�) · �(�)

=

{
n∏
i=1

ni∏
j=1
[yij h0(tij)�ij]�ij exp(−yijH0(tij)�ij)

}

×
[

n∏
i=1

1
�(’)

�’w’−1
i exp(−�wi)

]

·
[

n∏
i=1

ni∏
j=1

1
�(�− ’) �

�−’z�−’−1
ij exp(−�zij)

]

×�(�) · �(’) · �(�) · �(�)

We use the gamma priors with shape parameter �1 = 0:001 and scale parameter �2 = 0:001 for
the hyperparameter of random e�ect �, which is a non-informative prior and precludes large
frailty e�ect variance. By using the graphical modelling approach, the conditional distribution
of the hyperparameter � is

�(�|E)∝
n∏
i=1

ni∏
j=1

(
1
�(�)

��y�−1ij exp(−�yij)
)

· 1
�(�1)

��12 �
�1−1 exp(−��2)

∝
(

1
�(�)

)∑
i
ni

�
�
∑
i
ni+�1−1

(
n∏
i=1

ni∏
j=1
yij

)�
exp

(
−�
(
�2 +

n∑
i=1

ni∑
j=1
yij

))

This distribution is log concave in �, so we can use the free adaptive rejection sampling of
Gilks to sample from it [19].
Since the hyperparameter ’ is restricted to 0¡’¡�, we use the uniform prior distribution

on interval [0; �] for ’ which is a non-informative prior. So the conditional distribution of
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the hyperparameter ’ is proportional to

�
n’−
∑
i
ni’−1( 1

�(’)

)n( 1
�(�− ’)

) n∑
i=1

ni ( n∏
i=1
w’i

)(
n∏
i=1

ni∏
j=1
z−’ij

)

We �nd the mode of conditional distribution of ’ in each iteration and use the rejection
sampling for sampling from its conditional distribution. We let the envelope function be
proportional to the uniform distribution on (0; �).
The conditional distribution of the shared random e�ect wi is proportional to⎡

⎣ ni∏
j=1

(wi + zij)�ij

⎤
⎦w’−1

i exp

(
−wi

(
�+

ni∑
j=1
H0(tij)�ij

))

and the conditional distribution of individual random e�ect zij is proportional to

(wi + zij)�ij z
�−’−1
ij exp(−zij(�+H0(tij)�ij))

We use the Metropolis algorithm [17] for sampling from the conditional distribution of loga-
rithm of shared and individual random e�ects.
The prior distribution of the �xed e�ects is assumed to be multivariate normal with mean

vector �0 = 0 and covariance matrix �0 =1000I , which is a non-informative prior distribution.
The conditional distribution of the �xed e�ects � is proportional to

exp

{
−1=2(� − �0)′�−1

0 (� − �0) + �′
(

n∑
i=1

ni∑
j=1
�ij xij

)

−
n∑
i=1

ni∑
j=1
yijH0(tij) exp(x′

ij�)

}

which can be sampled using the Metropolis algorithm [17].
For baseline hazard parameter in the sth interval (�s), we use gamma priors with shape

parameter �s and scale parameter �s=1. The shape parameter �s is assumed as the maximum
likelihood estimate of hazard function in the sth interval. Let ds be the number of rejects that
occurred in the interval Is, Rs the risk set at ts, and Ds the number of subjects (grafts) in the
interval Is:

Rs = {(i; j); tij¿ts}

Ds = Rs−1 − Rs= {(i; j); tij ∈ Is}

ds =
∑
Ds
�ij
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Then the conditional distribution of �s, s=1; : : : ; k is given as

�(�s|Dobs; E; �−s; �)∝ (�s)ds exp(−H0s�s) · ��s−1s exp(−�s�s)

∝ �ds+�s−1s exp(−�s(H0s + �s))

where

H0s=

{∑
Ds
yij�ij(tij − ts−1) +

∑
Rs
yij�ij�s

}

So all conditional distributions of baseline hazard parameters are gamma distributions with
shape parameter ds+ �s and scale parameter H0s+�s, (s=1; : : : ; k). These nodes are sampled
directly using Gibbs sampling step [17].

ACKNOWLEDGEMENTS

This work is a part of the Ph.D. thesis of the �rst author at the Department of Biostatistics, Tarbiat
Modarres University, Tehran, Iran. He would like to thank the faculty of the Department for their
support. The authors would like to thank the referees for their valuable comments and suggestions.

REFERENCES

1. Tuft SJ, Gregory MW, Davison CR. Bilateral penetrating keratoplasty for keratoconus. Ophthalmology 1995;
102:462–468.

2. Musch DC, Meyer RF. Risk of endothelial rejection after bilateral penetrating keratoplasty. Ophthalmology
1989; 96:1139–1143.

3. Lim L, Pesudovs K, Coster DJ. Penetrating keratoplasty for Keratoconus; Visual outcome and success.
Ophthalmology 2000; 107:1125–1131.

4. Donshik PC, Cavanagh HD, Borucho� SA, Dohlman CH. E�ect of bilateral and unilateral grafts on incidence
of rejections in keratoconus. American Journal of Ophthalmology 1979; 87:823–826.

5. Cox DR. Regression models and life-tables (with discussion). Journal of the Royal Statistical Society, Series
B 1972; 34:187–220.

6. Vaupel JW, Manton KG, Stallavd E. The impact of heterogeneity in individual frailty on the dynamics of
mortality. Demography 1979; 16:439–454.

7. Clayton DG. A model for association in bivariate life-table and its application in epidemiological studies of
chronic disease incidence. Biometrika 1978; 65:141–151.

8. Clayton D, Cuzick J. Multivariate generalization of the proportional hazards model. Journal of the Royal
Statistical Society, Series A 1985; 148:82–117.

9. Yashin AI, Vaupel JW, Iachine I. Correlated individual frailty: an advantageous approach to survival analysis
of bivariate data. Mathematical Population Studies 1995; 5(2):1–15.

10. Hougaard P. Analysis of Multivariate Survival Data. Springer: New York, 2000.
11. Petersen JH. An additive frailty model for correlated life times. Biometrics 1998; 54:646–661.
12. Oakes D. Bivariate survival models induced by frailty. Journal of the American Statistical Association 1989;

84:487–493.
13. Clayton D. A Monte Carlo method for Bayesian inference in frailty models. Biometrics 1991; 47:467–485.
14. Bolstad W, Manda OS. Investigating child mortality in Malawi using family and community random e�ects: a

Bayesian analysis. Journal of the American Statistical Association 2001; 96:12–19.
15. Ibrahim JG, Chen M, Sinha D. Bayesian Survival Analysis. Springer: New York, 2001.
16. Gamerman C. Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference. Chapman & Hall:

London, 1997.
17. Gilks WR, Richardson S, Spiegelhalter DJ. Markov Chain Monte Carlo in Practice. Chapman & Hall: London,

1996.

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:2681–2693



A BAYESIAN ANALYSIS OF CORRELATED FRAILTY MODEL 2693

18. Spiegelhalter DJ. Bayesian graphical modeling: a case study in monitoring health outcomes. Applied Statistics
1998; 47(1):115–133.

19. Gilks WR. Derivative-free adaptive rejection sampling for Gibbs sampling. Bayesian Statistics, vol. 4. Oxford
University Press: Oxford, 1992; 641–649.

20. Gelman A. Inference and monitoring convergence. In Markov Chain Monte Carlo in Practice, Gilks WR,
Richardson S, Spiegelhalter DJ (eds). Chapman & Hall: London, 1996; 75–88.

21. Smith BJ. Bayesian Output Analysis Program (BOA), Version 1.0.0, User’s manual. http://www.public-
health.uiowa.edu, June 2001.

22. Brooks S, Gelman A. General method for monitoring convergence of iterative simulations. Journal of
Computational and Graphical Statistics 1998; 8(4):319–335.

23. Spigelhalter DJ, Best NG, Carlin BP, van der Linde A. Bayesian measures of model complexity and �t. Journal
of Royal Statistical Society B 2002; 64(Part 4):583–639.

24. Kalb�eisch JD. Nonparametric Bayesian analysis of survival time data. Journal of the Royal Statistical Society,
Series B 1978; 40:214–221.

25. Aslanidou H, Dey DK, Sinha D. Bayesian analysis of multivariate survival data using Monte Carlo methods.
Canadian Journal of Statistics 1998; 26:38–48.

26. Kass RE, Raftery AE. Bayes factor. Journal of the American Statistical Association 1995; 90:773–795.

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:2681–2693


