Effect of folic acid and metformin on insulin resistance and inflammatory factors of obese children and adolescents

Elham Hashemi Dehkordi1,2, Farnaz Sattari3, Abolfazl Khoshdel4, Karamali Kasiri5

1Departments of Pediatrics Endocrinology, 2School of Medicine, 3Pediatrics Infectious Diseases and 4Pediatrics Gastrology, Shahrekord University of Medical Sciences, Shahrekord, 5Department of Pediatric Endocrinology, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran

Several studies indicate that body fat and visceral adipose tissue in obese children and adolescents are predictive of obesity-related complications as well as the safety of some agents such as folic acid and metformin, this clinical trial was designed to investigate the effect of metformin and folic acid on inflammatory factors and IR among obese children. Materials and Methods: In this randomized, double-blind, controlled clinical trial study, sixty obese children aged 6–12 years were enrolled. Selected obese children were randomly allocated in two interventional (1 mg/daily folic acid or 1000 mg metformin for 8 weeks) groups. Biochemical measurements including homeostasis model assessment of IR (HOMA-IR), homocysteine (Hcy), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-8 (IL-8) were measured between and within the groups before and after trial. Results: In each group, thirty obese children were studied. The groups were age- and sex-matched. After folic acid and metformin administration, mean of Hcy, HOMA-IR, TNF-α, and IL-8 decreased significantly ($P < 0.05$). IL-6 decreased significantly after folic acid use ($P < 0.05$). Conclusion: The findings of this trial indicated that both metformin and folic acid could decrease IR and level of Hcy in obese children and adolescents. The effectiveness of metformin on IR was more significant than folic acid. Regarding the effectiveness of the two studied agents on inflammatory factors, it is suggested that the role of folic acid was superior to metformin. It is suggested that metformin is a proper agent for obese children with IR and folic acid is an appropriate supplement for obese children with increased inflammatory factors.

Key words: Children, folic acid, homocysteine, inflammation, insulin resistance, metformin, obese

INTRODUCTION

Childhood obesity has been considered an emerging health problem during the recent century.11 The prevalence of obesity among children and adolescents has increased dramatically during the last decades.11 It is associated with serious consequences and related comorbid disease at an early age. Moreover, most of the noncommunicable diseases in adulthood including cardiovascular disease (CVD) are originated from early life.2,3 Hence, prevention and management of obesity, as a major risk factor for mentioned complications, is crucial.

Background: Considering the increasing trend of obesity, especially in developing countries such as Iran, and the role of inflammatory factors and insulin resistance (IR) in the occurrence of obesity-related complications as well as the safety of some agents such as folic acid and metformin, this clinical trial was designed to investigate the effect of metformin and folic acid on inflammatory factors and IR among obese children. Materials and Methods: In this randomized, double-blind, controlled clinical trial study, sixty obese children aged 6–12 years were enrolled. Selected obese children were randomly allocated in two interventional (1 mg/daily folic acid or 1000 mg metformin for 8 weeks) groups. Biochemical measurements including homeostasis model assessment of IR (HOMA-IR), homocysteine (Hcy), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-8 (IL-8) were measured between and within the groups before and after trial. Results: In each group, thirty obese children were studied. The groups were age- and sex-matched. After folic acid and metformin administration, mean of Hcy, HOMA-IR, TNF-α, and IL-8 decreased significantly ($P < 0.05$). IL-6 decreased significantly after folic acid use ($P < 0.05$). Conclusion: The findings of this trial indicated that both metformin and folic acid could decrease IR and level of Hcy in obese children and adolescents. The effectiveness of metformin on IR was more significant than folic acid. Regarding the effectiveness of the two studied agents on inflammatory factors, it is suggested that the role of folic acid was superior to metformin. It is suggested that metformin is a proper agent for obese children with IR and folic acid is an appropriate supplement for obese children with increased inflammatory factors.

Key words: Children, folic acid, homocysteine, inflammation, insulin resistance, metformin, obese

there are many clinical and experimental evidences which indicate that reducing oxidative stress and inflammation in obese patients could have a significant effect on limiting the burden of obesity-related complications including diabetes and CVD.[9,10]

It seems that using pharmacological approach for targeting the inflammatory pathway or reducing IR would be a novel strategy of controlling and reducing obesity-related complications among pediatric population and consequently in adulthood.[11,12]

Although there are limited pharmacotherapy options for the treatment of pediatric obesity, some evidences mostly from clinical trials among adult population show that some pharmacological agents such as metformin and folic acid could have improving effect on the inflammatory status and IR of obese patients.[13‑15] There are few studies among pediatric populations in this regards and also, there are no conclusive reports regarding the appropriate duration of medical therapy with the above-mentioned agents.[16,17]

Considering the increasing trend of obesity, especially in developing countries such as Iran,[18] and the role of inflammatory factors and IR in the occurrence of obesity-related complications as well as the safety of the above-mentioned agents, this clinical trial was designed to investigate the effect of metformin and folic acid on inflammatory factors and IR among obese children.

MATERIALS AND METHODS

In this randomized, double-blind, controlled clinical trial study, sixty obese children, aged 6–12 years, attended the endocrinology clinic, affiliated to Shahrekord University of Medical Sciences, were enrolled.

Children with body mass index (BMI) >95th percentile were included in the study. Those with secondary obesity (due to endocrine disorder or genetic syndromes), renal and hepatic dysfunction, history of using anticonvulsant agents, estrogen, thiazides, metformin, cholestyramine, methotrexate, fibrates, nicotinic acid, and vitamin supplement (1 month before study) were excluded. In addition, those who were underweight, lost diet, or had not appropriate cooperation and regular follow-up were also excluded.

The protocol of the study was approved by the Pediatrics Review Board and Regional Bioethics Committee of Shahrekord University of Medical Sciences. The study was registered in the Iranian Registry of Clinical Trials (IRCT), IRCT registration number (2014020116435N1). Written informed consent was obtained from all the selected patients or their parents after explanation of the methods and goal of the study.

Selected obese children were randomly allocated into two interventional (folic acid 1 mg/daily or metformin 1000 mg/daily) groups [Figure 1].

- Folic acid (1 mg) supplied by Rouz Darou Pharmaceutical Company, Tehran, Iran
- Metformin (500 mg) supplied by Chemidarou industrial Company, Tehran, Iran.

All patients were examined clinically and their demographic and anthropometrics (BMI) information was recorded by a trained nurse using a questionnaire. The level of homocysteine (Hcy), IR, interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor-alpha (TNF-α) were measured in all participants before and after trial.

The levels of biochemical measurements before and after trial between and within the groups were compared.

Laboratory measurements

Venous blood samples were obtained from each participant after overnight fasting.

Figure 1: Consort diagram of the study
Hcy was measured by immunoassay method using Axis-Shield Diagnostics (Dundee, UK) kit.

TNF-α, IL-6, and IL-8 were measured enzymatically with standard auto-analyzer kits (Pars Azmoon, Tehran, Iran).

IR was measured using homeostasis model assessment of IR (HOMA-IR) formula (HOMA-IR = fasting insulin [µU/mL] × fasting glucose [mg/dL]/405).

Statistical analysis
Data were analyzed using SPSS version 20 (SPSS Inc., Chicago, IL, USA). Normality of data distribution was evaluated with Kolmogorov–Smirnov test. Mean of the studied variables before and after the study and between the groups was compared using paired t-test and independent samples t-test. The differences were considered as significant at \(P < 0.05 \).

RESULTS
In this trial, sixty obese children were allocated in two interventional groups (thirty obese children in each group). Demographic characteristics of the studied populations in the two groups are shown in Table 1. The two groups were age- and sex-matched, and the mean of BMI was not significantly different (\(P > 0.05 \)).

Mean ± standard deviation (SD) of biochemical measurements including Hcy, HOMA-IR, IL-6, IL-8, and TNF-α in the studied groups before and after the trial is shown in Table 2. Mean ± SD differences (before and after) of the studied biochemical variables in the two interventional groups are shown in Table 3.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Folic acid 1 mg/daily (n=30)</th>
<th>Metformin 1000 mg/daily (n=30)</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (female/male)</td>
<td>13/17</td>
<td>12/18</td>
<td>0.08</td>
</tr>
<tr>
<td>Age (years)</td>
<td>9.5±2.1</td>
<td>10.1±2.2</td>
<td>0.57</td>
</tr>
<tr>
<td>BMI (percentile)</td>
<td>94±3.7</td>
<td>95±2.5</td>
<td>0.87</td>
</tr>
</tbody>
</table>

BMI = Body mass index

<table>
<thead>
<tr>
<th>Variables</th>
<th>Folic acid 1 mg/daily</th>
<th>Metformin 1000 mg/daily</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOMA-IR</td>
<td>4.43±0.23</td>
<td>2.70±0.7</td>
<td><0.001</td>
</tr>
<tr>
<td>Hcy (µmol/L)</td>
<td>9.87±1.13</td>
<td>7.10±1.83</td>
<td><0.001</td>
</tr>
<tr>
<td>TNF-α (pg/ml)</td>
<td>90.18±15.3</td>
<td>60.64±11.56</td>
<td><0.001</td>
</tr>
<tr>
<td>IL-6 (pg/ml)</td>
<td>111.30±22.81</td>
<td>90.78±14.18</td>
<td>0.001</td>
</tr>
<tr>
<td>IL-8 (pg/ml)</td>
<td>338.39±25.12</td>
<td>294.21±23.76</td>
<td>0.001</td>
</tr>
</tbody>
</table>

There was not any significant relation between IR and Hcy and studied inflammatory factors (\(P > 0.05 \)).

DISCUSSION
In this study, the effectiveness of folic acid and metformin on reducing inflammation and IR of obese children and adolescents was investigated. The results of the current study indicated that both metformin and folic acid could have an improving effect on IR and some inflammatory factors such as TNF-α, IL-8, and Hcy. Folic acid could significantly reduce the level of IL-6 whereas metformin did not. Metformin have a superior effect on reducing IR and acid folic on reducing IL-6.

Evidences indicated that the level of Hcy and inflammatory factors is higher in obese children and the increased level of both mentioned factors is associated with a higher risk of CVD in this group of population.[19,20] Hence, we hypothesize that if administration of the two studied agents, i.e., folic acid and metformin could decrease the level of Hcy and inflammatory factors, using these agents with lower side effects could have protective effect on the occurrence of CVD in this group of children.

Literature review in this regard indicated that there were few studies in this field among pediatrics population and there were no similar studies which compare the effectiveness of the two relatively safe pharmacological agents in this field.

Several studies have indicated the proper effect of metformin in the management of obese children, but regarding its anti-inflammatory effects, there were few studies.[21,22] Results of different clinical trials on the effectiveness of metformin in childhood obesity were controversial in various fields of obesity management. Regarding the role of metformin in inflammation among obese children, the findings of different studies are also controversial.[23]

Gómez-Diaz et al. have indicated that using 850 mg metformin for 12 weeks in 4–17-year-old children with glucose intolerance could have improving effect...
Table 3: Mean ± standard deviation differences (before and after) of studied biochemical variables including homeostasis model assessment of insulin resistance, homocysteine, tumor necrosis factor-alpha, interleukin-6, and interleukin-8 in the two interventional groups

<table>
<thead>
<tr>
<th>Variables</th>
<th>Folic acid 1 mg/daily</th>
<th>Metformin 1000 mg/daily</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOMA-IR (µmol/L)</td>
<td>-2.13±0.99</td>
<td>-3.87±1.71</td>
<td><0.001</td>
</tr>
<tr>
<td>Hcy (µmol/L)</td>
<td>-2.71±3.01</td>
<td>-3.53±4.12</td>
<td>0.38</td>
</tr>
<tr>
<td>TNF-α (pg/ml)</td>
<td>-29.53±68.44</td>
<td>-31.38±51.63</td>
<td>0.74</td>
</tr>
<tr>
<td>IL-8 (pg/ml)</td>
<td>-20.51±30.39</td>
<td>-23.49±38.80</td>
<td></td>
</tr>
<tr>
<td>IL-6 (pg/ml)</td>
<td>44.18±48.75</td>
<td>2.59±101.19</td>
<td>0.002</td>
</tr>
</tbody>
</table>

HOMA-IR = Model assessment of insulin resistance; Hcy = Homocysteine; TNF-α = Tumor necrosis factor-alpha; IL=Interleukin

Although evidences indicated that there is a link between inflammation and obesity and metabolic biomarkers such as HOMA-IR in adult population, recent studies showed that the association was not similar for children and adolescents.[33]

In our trial, folic acid has a decreasing effect on all studied variables, especially on inflammatory factors.

Galcheva et al. have shown that though the level of HOMA-IR was higher in obese prepubertal children, they did not find any association between TNF-α and IL-6 and adiposity.[34] In another study, Zabaleta et al. have not indicated a significant association between HOMA-IR and TNF-α and IL-8.[33] Some studies also did not report any association between IL-6 and IR among children and adolescents. Roth et al. found a correlation between IL-6 and HOMA-IR score changes over 1 year in an intervention study on obese children.[35] Bugge et al. also did not demonstrate any cross-sectional association between IL-6 and HOMA-IR, but they indicated that IL-6 level at age 9 correlates with HOMA-IR at age 13 years, especially among girls.[36]

Similar to the previous studies, we did not find any association between HOMA-IR and IL-6, IL-8, and TNF-α in our studied obese children.

The limitation of the current study was shorter duration of the study. As this study was the first study in this field, we tried to design the trial for short duration and then plan future studies for longer duration and also in combination with lifestyle modification. In addition, it seems that the effect of studied agents in obese children with and without IR would be more helpful for proper management of childhood obesity.

The strength of this trial was its novelty, which compared the efficacy of the two relatively safe pharmacological agents for the treatment of pediatric obese population.

CONCLUSION

The findings of this trial indicated that both metformin and folic acid could decrease IR and level of Hcy in obese children and adolescents. The effectiveness of metformin on IR was more significant than folic acid. Regarding the effectiveness of the two studied agents on inflammatory factors, it is suggested that the role of folic acid was superior to metformin. These results could help us for proper management of obese children regarding their condition. It is suggested that metformin is a proper agent for obese children with IR, and folic acid is an appropriate supplement for obese children with increased inflammatory factors. Further studies with larger sample size and longer duration are recommended.
Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

AUTHORS’ CONTRIBUTION
All authors contributed in all stages of the work including, design, concept, and all stages of the trial. All authors read and confirmed the draft of the manuscript before submission.

REFERENCES
34. Galcheva SV, Iotova YM, Yotov YT, Bernasconi S, Street ME.
