Multiple Sclerosis Gene Therapy with Recombinant Viral Vectors: Overexpression of IL-4, Leukemia Inhibitory Factor, and IL-10 in Wharton's Jelly Stem Cells Used in EAE Mice Model.

Hosseini, Ahmad. and Estiri, Hajar. and Abdolhosseinzadeh, Baharak. and Alizadeh, Akram. and Akhavan Niaki, Haleh. and Ghaderian, Sayyed Mohammad Hossein. and Fallah, Ali. (2017) Multiple Sclerosis Gene Therapy with Recombinant Viral Vectors: Overexpression of IL-4, Leukemia Inhibitory Factor, and IL-10 in Wharton's Jelly Stem Cells Used in EAE Mice Model. Cell J (Yakhte, 19 (3).

[img]
Preview
Text
19.pdf

Download (3MB) | Preview

Abstract

OBJECTIVES: Immunotherapy and gene therapy play important roles in modern medicine. The aim of this study is to evaluate the overexpression of interleukin-4 (IL-4), IL-10 and leukemia inhibitory factor (LIF) in Wharton's jelly stem cells (WJSCs) in the experimental autoimmune encephalomyelitis (EAE) mice model. MATERIALS AND METHODS: In this experimental study, a DNA construction containing IL- 4, IL-10 and LIF was assembled to make a polycistronic vector (as the transfer vector). Transfer and control vectors were co-transfected into Human Embryonic Kidney 293 (HEK-293T) cells with helper plasmids which produced recombinant lentiviral viruses (rLV). WJSCs were transduced with rLV to make recombinant WJSC (rWJSC). In vitro protein and mRNA overexpression of IL-4, LIF, and IL-10 were evaluated using quantitative polymerase chain reaction (qPCR), enzyme-linked immunosorbent assay (ELISA) and western blot (WB) analysis. EAE was induced in mice by MOG-CFA and pertussis toxin. EAE mice were injected twice with 2×105 rWJSCs. The in vivo level of IL-4, LIF, IL-10 cytokines and IL-17 were measured by ELISA. Brain tissues were analyzed histologically for evaluation of EAE lesions. RESULTS: Isolated WJSCs were performed to characterize by in vitro differentiation and surface markers were analyzed by flow cytometry method. Cloning of a single lentiviral vector with five genes was done successfully. Transfection of transfer and control vectors were processed based on CaPO4 method with >90% efficiency. Recombinant viruses were produced and results of titration showed 2-3×107 infection-unit/ml. WJSCs were transduced using recombinant viruses. IL-4, IL-10 and LIF overexpression were confirmed by ELISA, WB and qPCR. The EAE mice treated with rWJSC showed reduction of Il-17, and brain lesions as well as brain cellular infiltration, in vivo. Weights and physical activity were improved in gene-treated group. CONCLUSIONS: These results showed that gene therapy using anti-inflammatory cytokines can be a promising approach against multiple sclerosis (MS). In addition, considering the immunomodulatory potential of WJSCs, an approach using a combination of WJSCs and gene therapy will enhance the treatment efficacy.

Item Type: Article
Uncontrolled Keywords: Gene Therapy, Multiple Sclerosis, Wharton’s Jelly Stem Cells, Cytokines
Subjects: WL Nervous system
QU Biochemistry > Cell biology and genetics
Divisions: Reserach Vice-Chancellar Department > Cellular and Molecular Research Center
Depositing User: zahra bagheri .
Date Deposited: 28 Nov 2017 10:35
Last Modified: 07 Feb 2018 05:22
URI: http://eprints.skums.ac.ir/id/eprint/6460

Actions (login required)

View Item View Item