PREDICTION OF SOFT TISSUE PROFILE CHANGES FOLLOWING ORTHODONTIC RETRACTION OF INCISORS IN IRANIAN GIRLS

Aim: To study the relationship between incisor retraction and soft tissue profile alterations and to identify and quantify the parameters that influence it. Methods: Pre- and posttreatment lateral cephalograms of 37 Class I and Class II Division 1 Iranian females in whom at least one maxillary premolar was bilaterally extracted were analyzed and compared. Results: Significant positive correlations were found between retraction of the maxillary and mandibular incisors and posterior movement of the upper lip ($r = 0.53$, $P < .001$), the lower lip ($r = 0.63$, $P < .001$), thickness increase of the upper ($r = 0.59$, $P < .001$) and lower ($r = 0.69$, $P < .001$) lip, increase of the soft tissue lower anterior face height ($r = 0.81$, $P < .001$) and lower soft tissue component ($r = 0.49$, $P < .001$), and an increase of the nasolabial angle ($r = 0.43$, $P < .01$). The ratio of maxillary incisor to upper lip retraction was 2:1. Conclusion: In Iranian girls, a strong correlation exists between anterior tooth retraction and the position and configuration of both lips. World J Orthod 2010;11:262–268.

Key words: prediction, profile, incisor retraction, lip position, extraction therapy

One purpose of orthodontic treatment is to improve the dentoskeletal relationship for good esthetics. The soft tissue of the face is like a mask overlying the skeletal framework, which is affected by changes of the bones and teeth in direct contact with it. Lip positional changes is critical for treatment planning, especially in patients who require premolar extractions.2 Predicting and quantifying such changes provides important information about treatment alternatives.2 Hard tissue changes of the lower facial third will affect the lip, nose, and chin,3 as well as the nasolabial and labiometal angle.4,5 Such hard tissue changes can be brought about by tooth movements, orthopedic growth modulations, and surgery.6,7 Changing tooth position and inclination by either protraction or retraction has the potential to directly influence the lips.8–18 When the main treatment objective is to decrease lower facial convexity and the fullness of the lips, retraction of the maxillary and mandibular anterior teeth becomes necessary, which cannot be accomplished without extraction. Repositioning of the upper lip in response to maxillary incisor retraction is commonly expressed as a ratio. The reported ratios vary remarkably in relation to sex, ethnicity, and treatment modality. Hershey9 concluded a 3:1 ratio

1 Assistant Professor, Orthodontic Department, Faculty of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.
2 Postgraduate student, Orthodontic Department, Faculty of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.
3 General Dentist, Tehran, Iran.

CORRESPONDENCE
Dr Darab Gholami Borujeni
Tehran University of Medical Sciences
Faculty of Dentistry
Ghods St.
Enghelab St.
Tehran, Iran
14176-14411
Email: d_gholami@razi.tums.ac.ir

© 2010 BY QUINTESSENCE PUBLISHING CO, INC. PRINTING OF THIS DOCUMENT IS RESTRICTED TO PERSONAL USE ONLY. NO PART OF THIS ARTICLE MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM WITHOUT WRITTEN PERMISSION FROM THE PUBLISHER.
in adult white females. In a study involving 60 preadolescent boys, Wisth11 reported a 2:1 ratio for nonextraction patients and a 3:1 ratio for patients with extractions. Rains and Nanda14 stated a ratio of 1.6:1.0 for 15- to 23-year-old white females, while Rudee19 noted a 2:1 ratio after studying 85 individuals between 6 and 22 years of age. Kokodynski et al20 studied individuals of both sexes 16 years and older and described this ratio as 1.5:1.0 for females and 1.6:1.0 for males.

According to Brock et al,21 any soft tissue changes in blacks occur generally more downward, whereas in whites, they occur in a more backward direction. Garner conducted two studies on blacks and found a 3.7:1.0 ratio for both sexes and a 2.0:1.0 ratio for only females.22 Also, for black females, Diels et al23 and Caplan et al24 reported ratios of 3.2:1.0 and 1.6:1.0, respectively. For an Asian population, Lew25 delineated a 2.1:1.0 ratio, whereas also for Asians, Yogosawa26 stated this ratio to be 2.5:1.0 (for maxillary incisor retraction to lower lip retraction, it amounted to 1.4:1.0). In an Indonesian population, Kusnoto and Kusnoto27 observed 0.4 mm of upper and 0.6 mm of lower lip retraction per millimeter of mandibular incisor retraction.

Talass et al16 stated more generally in their study of 80 white females that retraction of the maxillary incisors causes a retraction of the upper lip and an increase of the lower lip length and the nasolabial angle. Similarly, other studies described changes in lip position, length, and width.28,29 Because there are little relevant data for Iranians, this study was initiated.

MATERIAL AND METHODS

The material consisted of cephalograms with good midfacial soft tissue resolution from 37 females before (T1) and after (T2) orthodontic therapy. All individuals were treated in two orthodontic practices and chosen at random. The mean age at pretreatment was 13.9 years (range 10 to 18 years), whereas at the end of treatment, it was 16.0 years. On average, the treatments lasted 25 months. The six inclusion criteria for the patients were:

- Bilateral extraction of at least one maxillary premolar
- Class I or Class II division 1 occlusion
- Treatment with Edgewise appliances and maximum anchorage
- No vertical facial configuration as defined by the mandibular plane angle
- No syndromes, asymmetries, or congenitally missing teeth
- No previous orthognathic surgery.

In 10 patients, the maxillary first premolars had been extracted; in 17 others, all four first premolars had been removed. Measurements of the sample are summarized in Table 1.

Table 1 Mean, standard deviation (SD), maximum, and minimum of various dental, skeletal, and soft tissue measurements before treatment

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>SD</th>
<th>Maximum</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overjet (mm)</td>
<td>2.1</td>
<td>1.5</td>
<td>5.5</td>
<td>0.0</td>
</tr>
<tr>
<td>Overbite (mm)</td>
<td>5.3</td>
<td>2.2</td>
<td>12.0</td>
<td>2.0</td>
</tr>
<tr>
<td>SNA (degrees)</td>
<td>78.9</td>
<td>3.3</td>
<td>86.0</td>
<td>69.0</td>
</tr>
<tr>
<td>SNB (degrees)</td>
<td>74.4</td>
<td>3.6</td>
<td>82.0</td>
<td>63.0</td>
</tr>
<tr>
<td>ANB (degrees)</td>
<td>4.4</td>
<td>1.6</td>
<td>8.0</td>
<td>0.0</td>
</tr>
<tr>
<td>FMA (degrees)</td>
<td>30.3</td>
<td>6.1</td>
<td>47.0</td>
<td>20.0</td>
</tr>
<tr>
<td>Sum angle (degrees)</td>
<td>401.9</td>
<td>6.5</td>
<td>424.0</td>
<td>393.0</td>
</tr>
<tr>
<td>Facial plane angle (degrees)</td>
<td>86.4</td>
<td>3.1</td>
<td>93.5</td>
<td>81.0</td>
</tr>
<tr>
<td>Nasolabial angle (degrees)</td>
<td>106.1</td>
<td>10.2</td>
<td>125.0</td>
<td>73.0</td>
</tr>
<tr>
<td>Mentolabial angle (degrees)</td>
<td>134.1</td>
<td>17.5</td>
<td>170.0</td>
<td>94.0</td>
</tr>
<tr>
<td>U1-SN (degrees)</td>
<td>107.8</td>
<td>7.5</td>
<td>122.0</td>
<td>85.0</td>
</tr>
<tr>
<td>L1-MP (degrees)</td>
<td>96.3</td>
<td>9.4</td>
<td>128.0</td>
<td>75.0</td>
</tr>
</tbody>
</table>

© 2010 BY QUINTESSENCE PUBLISHING CO, INC. PRINTING OF THIS DOCUMENT IS RESTRICTED TO PERSONAL USE ONLY. NO PART OF THIS ARTICLE MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM WITHOUT WRITTEN PERMISSION FROM THE PUBLISHER.
All pre- and posttreatment cephalograms were traced twice by one operator on acetate paper with a 0.5 mm fine-tip pencil. The magnification of each cephalostat was known, and the appropriate corrections were performed for each data entry. All soft and hard tissue landmarks and reference lines are depicted and described in Figs 1 and 2 and Tables 2a and 2b. Due to difficulties in locating the landmarks for Frankfort horizontal, a horizontal reference line (X) was constructed that ran 7 degrees below the SN plane; the (vertical) Y reference line was perpendicular to the X line from S.16

Standard statistical evaluation was performed with SPSS 13.0. The Pearson correlation coefficient was used to compare incisor retraction and subsequent soft tissue changes, and a stepwise multiple regression analysis was performed to evaluate the predictability of any soft tissue changes following incisor retraction.

RESULTS

All 15 linear and angular measurements comparing the soft tissue changes as a result of treatment and growth are summarized in Table 3. Overall, average 4.5 ± 1.9 mm maxillary incisor retraction resulted in an average 1.6 ± 2.0 mm upper lip retraction ($r = 0.53$, $P < .001$). The correlation coefficient between maxillary incisor and upper lip retraction amounted to decreased overjet to $r = 0.60$ ($P < .01$), vertical facial configuration to $r = 0.66$ ($P < .001$), increased FMA to $r = 0.78$ ($P < .001$), lip competency to $r = 0.60$ ($P < .05$), increased upper lip thickness to $r = 0.69$ ($P < .001$), and increased lower lip thickness to $r = 0.63$ ($P < .001$).

In general, an average 1.9 ± 2.0 mm mandibular incisor retraction caused on average a 1.5 ± 2.1 mm lower lip retraction ($r = 0.63$, $P < .001$). The lower lip was
also retracted with maxillary incisor retraction, but this correlation was not as strong as the previous one ($r = 0.38$, $P < .05$).

Again, the correlation coefficient between maxillary incisor retraction and lower lip retraction amounted to decreased overjet to $r = 0.68$ ($P < .001$), vertical facial configuration to $r = 0.43$ ($P < .01$), lip competency to $r = 0.57$ ($P < .05$), increased upper lip thickness to $r = 0.52$ ($P < .05$), and decreased lower lip thickness to $r = 0.44$ ($P < .05$).
A significant increase of 2.1 ± 1.9 mm in upper lip thickness (r = 0.59, P < .001) and of 1.1 ± 1.6 mm in lower lip thickness (r = 0.69, P < .001) occurred with incisor retraction. Maxillary incisor retraction led to an average increase of 0.9 ± 0.6 mm in upper lip length (r = 0.52, P < .01) and of 1.8 ± 1.7 mm in lower lip length (r = 0.37, P < .01). Lower lip length increase correlated with initial lower lip length (r = 0.35, P < .05), initial SNB (r = 0.33, P < .05), and initial overjet (r = 0.32, P < .05).

Also, lower anterior face height (LAFH) and lower soft tissue component (LSTC) were increased following maxillary incisor retraction (r = 0.81, P < .001 and r = 0.49, P < .01, respectively). The ratio between the increase in soft and hard tissue lower facial height was 0.7:1.0; both were strongly correlated. Finally, maxillary incisor retraction produced an average nasolabial angle increase of 3.9 degrees (r = 0.43, P < .01).

The overall ratio of maxillary incisor retraction to upper lip retraction was 2:1.

DISCUSSION

A reliable method for predicting changes in the soft tissue profile in response to tooth movement could be valuable to all orthodontists. However, this response varies largely among ethnicities. Most studies regarding soft tissue profiles have been carried out on white individuals. Aside from this, a recent study on adults emphasized a pronounced variability among patients that may explain why it seems impossible to accurately predict the behavior of soft tissue following maxillary incisor movements.

The pretreatment age span (10 to 18 years) of the sample of this study appears appropriate because most patients seeking orthodontic treatment are of this age. All subjects were females to avoid variations between sexes that, as demonstrated in previous studies, would jeopardize an interpretation of the results.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>SD</th>
<th>Maximum</th>
<th>Minimum</th>
<th>r</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper lip retraction (mm)</td>
<td>1.1</td>
<td>2.0</td>
<td>5.0</td>
<td>−3.0</td>
<td>0.53</td>
<td>< .001</td>
</tr>
<tr>
<td>Lower lip retraction (mm)</td>
<td>0.5</td>
<td>2.1</td>
<td>5.5</td>
<td>−4.0</td>
<td>0.63</td>
<td>< .001</td>
</tr>
<tr>
<td>Increase in upper lip thickness (mm)</td>
<td>2.1</td>
<td>2.0</td>
<td>8.5</td>
<td>−1.5</td>
<td>0.59</td>
<td>< .001</td>
</tr>
<tr>
<td>Increase in lower lip thickness (mm)</td>
<td>0.6</td>
<td>1.6</td>
<td>5.0</td>
<td>−3.0</td>
<td>0.69</td>
<td>< .001</td>
</tr>
<tr>
<td>Decrease in interlabial gap (mm)</td>
<td>1.9</td>
<td>2.5</td>
<td>1.0</td>
<td>−9.5</td>
<td>0.68</td>
<td>NS</td>
</tr>
<tr>
<td>Increase in upper lip length (mm)</td>
<td>0.9</td>
<td>1.6</td>
<td>5.5</td>
<td>−1.5</td>
<td>0.52</td>
<td>< .01</td>
</tr>
<tr>
<td>Increase in lower lip length (mm)</td>
<td>1.8</td>
<td>1.7</td>
<td>6.0</td>
<td>−0.5</td>
<td>0.37</td>
<td>< .01</td>
</tr>
<tr>
<td>Increase in LAFH (mm)</td>
<td>2.8</td>
<td>2.5</td>
<td>8.0</td>
<td>−2.0</td>
<td>0.81</td>
<td>< .001</td>
</tr>
<tr>
<td>Increase in LSTC (mm)</td>
<td>2.8</td>
<td>2.3</td>
<td>10.0</td>
<td>−1.0</td>
<td>0.49</td>
<td>< .01</td>
</tr>
<tr>
<td>Increase in nasolabial angle (degrees)</td>
<td>3.9</td>
<td>8.6</td>
<td>26.0</td>
<td>−10.0</td>
<td>0.43</td>
<td>< .01</td>
</tr>
<tr>
<td>Increase in mentolabial angle (degrees)</td>
<td>3.4</td>
<td>11.4</td>
<td>27.0</td>
<td>−25.0</td>
<td>0.46</td>
<td>NS</td>
</tr>
<tr>
<td>Decrease in upper vermilion height (mm)</td>
<td>0.4</td>
<td>1.6</td>
<td>5.0</td>
<td>−4.0</td>
<td>0.40</td>
<td>NS</td>
</tr>
<tr>
<td>Increase in lower vermilion height (mm)</td>
<td>0.2</td>
<td>1.2</td>
<td>2.0</td>
<td>−2.0</td>
<td>0.34</td>
<td>NS</td>
</tr>
<tr>
<td>Decrease in total vermilion height (mm)</td>
<td>1.9</td>
<td>3.5</td>
<td>6.0</td>
<td>−9.0</td>
<td>0.49</td>
<td>NS</td>
</tr>
<tr>
<td>Increase in soft tissue thickness at Pog (mm)</td>
<td>0.4</td>
<td>1.1</td>
<td>3.0</td>
<td>−2.0</td>
<td>0.37</td>
<td>NS</td>
</tr>
</tbody>
</table>

Table 3 Mean, standard deviation (SD), minimum, maximum, correlation coefficient with maxillary incisor retraction (r) and P value of upper and lower lip retraction and amount of increase and decrease of various cephalometric parameters as a result of treatment and growth

NS = not significant.
To assess the dental, skeletal, and soft tissue changes, a horizontal reference line (X) was introduced, which runs 7 degrees below SN through S. This reference is commonly applied to approximate the true horizontal line and minimize the variability of the intracranial structures.16,24

The ratio of upper lip retraction to maxillary incisor retraction obtained in this study was 2:1. The correlation coefficient between these two variables was increased in patients with decreased overjet, a long face tendency (increased FMA) before treatment. This finding is coincident with the results of previous studies.9,11,14,16,20,22–25,31 Lower lip retraction was more strongly correlated with mandibular incisor retraction than upper lip retraction with maxillary incisor retraction. This correlation was higher in patients with small overjet and thin lower lips at pretreatment, which is confirmed by the study of Conley et al.32 Besides this, several earlier studies have emphasized that only retraction of the mandibular incisors is correlated with a change of the upper and lower lip.5,24,26,33 Other studies, however, stated that all soft tissue changes are more strongly correlated with maxillary than mandibular incisor retraction34 or even that mandibular incisor movements do not change the position of either the upper or lower lip.14 Kasai remarked in this context that the lower lip is more adaptable than the upper one.35 One study found only minor changes and concluded that the pretreatment lip morphology is the best predictor of the posttreatment configuration.36

Increase in upper and lower lip width is also verified by previous investigations.16,21,27 The increase in upper lip length was smaller in patients with a decreased overbite. Lower lip length increase had a positive correlation with pretreatment lip length. Increase in LSTC was also significant, although it had less clinical significance.18

In the current study, no significant increase in the mentolabial angle was shown after incisor retraction, which is in accordance with the study of Talass et al16; however, in yet another study, this angle as the nasolabial angle increased significantly.26

Whether the observed changes are a result of the extraction of the first premolars cannot easily be answered. At a minimum, the influence of growth has to be included. Surprisingly, a recent study stated that in patients with a Class II relationship, a treatment protocol with extraction of two maxillary premolars provides similar soft tissue results as treatment without extraction.37

CONCLUSION

There was a strong correlation between anterior tooth retraction and the anteroposterior position of both lips in Iranian girls, and the ratio of maxillary incisor retraction to upper lip retraction was 2:1.

REFERENCES

